Potthoff Matthew J, Wu Hai, Arnold Michael A, Shelton John M, Backs Johannes, McAnally John, Richardson James A, Bassel-Duby Rhonda, Olson Eric N
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
J Clin Invest. 2007 Sep;117(9):2459-67. doi: 10.1172/JCI31960.
Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases.
骨骼肌由具有不同收缩速率、代谢特性和疲劳易感性的异质性肌纤维组成。我们发现,作为肌细胞增强因子2(MEF2)转录因子转录抑制因子的II类组蛋白去乙酰化酶(HDAC)蛋白,与快肌(如外侧白肌)相比,在慢肌比目鱼肌中无法积累。因此,蛋白酶体功能的药理学阻断在体内特异性增加了比目鱼肌中II类HDAC蛋白的表达。通过在小鼠中使用功能获得和功能丧失方法,我们发现II类HDAC蛋白通过抑制MEF2活性来抑制慢抽搐氧化肌纤维的形成。相反,在转基因小鼠的骨骼肌中表达超活性形式的MEF2可促进慢纤维的形成并增强跑步耐力,使小鼠能够奔跑的距离几乎是同窝野生型小鼠的两倍。因此,慢骨骼肌中II类HDAC的选择性降解提供了一种通过增强MEF2的转录活性来提高身体性能和抗疲劳能力的机制。这些发现为我们认为的骨骼肌功能分子基础提供了新见解,并对肌肉疾病的可能治疗干预具有重要意义。