Suppr超能文献

丁酸对人肠上皮细胞中一元羧酸转运体1(MCT1)启动子的调控:NF-κB信号通路的参与

Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway.

作者信息

Borthakur Alip, Saksena Seema, Gill Ravinder K, Alrefai Waddah A, Ramaswamy Krishnamurthy, Dudeja Pradeep K

机构信息

Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA.

出版信息

J Cell Biochem. 2008 Apr 1;103(5):1452-63. doi: 10.1002/jcb.21532.

Abstract

Butyrate, a short chain fatty acid (SCFA) produced by bacterial fermentation of undigested carbohydrates in the colon, constitutes the major fuel for colonocytes. We have earlier shown the role of apically localized monocarboxylate transporter isoform 1 (MCT1) in transport of butyrate into human colonic Caco-2 cells. In an effort to study the regulation of MCT1 gene, we and others have cloned the promoter region of the MCT1 gene and identified cis elements for key transcription factors. A previous study has shown up-regulation of MCT1 expression, and activity by butyrate in AA/C1 human colonic epithelial cells, however, the detailed mechanisms of this up-regulation are not known. In this study, we demonstrate that butyrate, a substrate for MCT1, stimulates MCT1 promoter activity in Caco-2 cells. This effect was dose dependent and specific to butyrate as other predominant SCFAs, acetate, and propionate, were ineffective. Utilizing progressive deletion constructs of the MCT1 promoter, we showed that the putative butyrate responsive elements are in the -229/+91 region of the promoter. Butyrate stimulation of the MCT1 promoter was found to be independent of PKC, PKA, and tyrosine kinases. However, specific inhibitors of the NF-kappaB pathway, lactacystein (LC), and caffeic acid phenyl ester (CAPE) significantly reduced the MCT1 promoter stimulation by butyrate. Also, butyrate directly stimulated NF-kappaB-dependent luciferase reporter activity. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) also stimulated MCT1 promoter activity, however, unlike butyrate, this stimulation was unaltered by the NF-kappaB inhibitors. Further, the combined effect of butyrate, and TSA on MCT1 promoter activity was additive, indicating that their mechanisms of action were independent. Our results demonstrate the involvement of NF-kappaB pathway in the regulation of MCT1 promoter activity by butyrate.

摘要

丁酸盐是结肠中未消化碳水化合物经细菌发酵产生的一种短链脂肪酸(SCFA),是结肠细胞的主要燃料。我们之前已经证明了顶端定位的单羧酸转运体亚型1(MCT1)在丁酸盐转运至人结肠Caco-2细胞中的作用。为了研究MCT1基因的调控,我们和其他人克隆了MCT1基因的启动子区域,并确定了关键转录因子的顺式元件。先前的一项研究表明,丁酸盐可上调AA/C1人结肠上皮细胞中MCT1的表达和活性,然而,这种上调的详细机制尚不清楚。在本研究中,我们证明了MCT1的底物丁酸盐可刺激Caco-2细胞中MCT1启动子的活性。这种效应具有剂量依赖性,且对丁酸盐具有特异性,因为其他主要的SCFA,如乙酸盐和丙酸盐,没有效果。利用MCT1启动子的渐进缺失构建体,我们表明推定的丁酸盐反应元件位于启动子的-229/+91区域。发现丁酸盐对MCT1启动子的刺激独立于蛋白激酶C(PKC)、蛋白激酶A(PKA)和酪氨酸激酶。然而,核因子κB(NF-κB)途径的特异性抑制剂乳胞素(LC)和咖啡酸苯乙酯(CAPE)显著降低了丁酸盐对MCT1启动子的刺激。此外,丁酸盐直接刺激了NF-κB依赖性荧光素酶报告基因的活性。组蛋白去乙酰化酶(HDAC)抑制剂曲古抑菌素A(TSA)也刺激了MCT1启动子的活性,然而,与丁酸盐不同,这种刺激不受NF-κB抑制剂的影响。此外,丁酸盐和TSA对MCT1启动子活性的联合作用是相加的,表明它们的作用机制是独立的。我们的结果证明了NF-κB途径参与了丁酸盐对MCT1启动子活性的调控。

相似文献

2
PKC-dependent stimulation of the human MCT1 promoter involves transcription factor AP2.
Am J Physiol Gastrointest Liver Physiol. 2009 Feb;296(2):G275-83. doi: 10.1152/ajpgi.90503.2008. Epub 2008 Nov 25.
3
A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1.
Am J Physiol Gastrointest Liver Physiol. 2012 Nov 15;303(10):G1126-33. doi: 10.1152/ajpgi.00308.2012. Epub 2012 Sep 13.
4
Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation.
Gastroenterology. 2007 Dec;133(6):1916-27. doi: 10.1053/j.gastro.2007.08.041. Epub 2007 Aug 22.
5
Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1.
J Physiol. 2002 Mar 1;539(Pt 2):361-71. doi: 10.1113/jphysiol.2001.014241.
6
Role of USF1 and USF2 as potential repressor proteins for human intestinal monocarboxylate transporter 1 promoter.
Am J Physiol Gastrointest Liver Physiol. 2005 Jun;288(6):G1118-26. doi: 10.1152/ajpgi.00312.2004. Epub 2005 Feb 3.
7
Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line.
Dig Dis Sci. 2013 Mar;58(3):660-7. doi: 10.1007/s10620-012-2407-x. Epub 2013 Jan 24.
8
Mechanisms underlying modulation of monocarboxylate transporter 1 (MCT1) by somatostatin in human intestinal epithelial cells.
Am J Physiol Gastrointest Liver Physiol. 2009 Nov;297(5):G878-85. doi: 10.1152/ajpgi.00283.2009.
9
The human monocarboxylate transporter, MCT1: genomic organization and promoter analysis.
Biochem Biophys Res Commun. 2002 Apr 12;292(4):1048-56. doi: 10.1006/bbrc.2002.6763.

引用本文的文献

4
5
Gut microbiome and cardiometabolic comorbidities in people living with HIV.
Microbiome. 2024 Jun 14;12(1):106. doi: 10.1186/s40168-024-01815-y.
6
The effect of oral butyrate on colonic short-chain fatty acid transporters and receptors depends on microbial status.
Front Pharmacol. 2024 Mar 26;15:1341333. doi: 10.3389/fphar.2024.1341333. eCollection 2024.
7
The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: a comprehensive review.
Front Neurosci. 2024 Feb 21;18:1346184. doi: 10.3389/fnins.2024.1346184. eCollection 2024.
8
Dynamic changes in butyrate levels regulate satellite cell homeostasis by preventing spontaneous activation during aging.
Sci China Life Sci. 2024 Apr;67(4):745-764. doi: 10.1007/s11427-023-2400-3. Epub 2023 Dec 20.
9
Analysis of the gut microbiota in children with gastroesophageal reflux disease using metagenomics and metabolomics.
Front Cell Infect Microbiol. 2023 Oct 13;13:1267192. doi: 10.3389/fcimb.2023.1267192. eCollection 2023.
10
Role of Human Monocarboxylate Transporter 1 (hMCT1) and 4 (hMCT4) in Tumor Cells and the Tumor Microenvironment.
Cancer Manag Res. 2023 Sep 4;15:957-975. doi: 10.2147/CMAR.S421771. eCollection 2023.

本文引用的文献

1
Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle.
J Physiol. 2006 Nov 15;577(Pt 1):433-43. doi: 10.1113/jphysiol.2006.115436. Epub 2006 Sep 7.
2
Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen.
J Physiol. 2006 Oct 15;576(Pt 2):635-47. doi: 10.1113/jphysiol.2006.115931. Epub 2006 Aug 10.
3
Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum.
Exp Physiol. 2006 Sep;91(5):835-44. doi: 10.1113/expphysiol.2006.033837. Epub 2006 Jul 20.
4
Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level.
Am J Physiol Gastrointest Liver Physiol. 2006 Jan;290(1):G30-5. doi: 10.1152/ajpgi.00302.2005. Epub 2005 Sep 8.
6
Expression and membrane localization of MCT isoforms along the length of the human intestine.
Am J Physiol Cell Physiol. 2005 Oct;289(4):C846-52. doi: 10.1152/ajpcell.00112.2005. Epub 2005 May 18.
8
Role of USF1 and USF2 as potential repressor proteins for human intestinal monocarboxylate transporter 1 promoter.
Am J Physiol Gastrointest Liver Physiol. 2005 Jun;288(6):G1118-26. doi: 10.1152/ajpgi.00312.2004. Epub 2005 Feb 3.
9
The importance of butyrate transport to the regulation of gene expression in the colonic epithelium.
Biochem Soc Trans. 2004 Dec;32(Pt 6):1100-2. doi: 10.1042/BST0321100.
10
Regulation at multiple levels of NF-kappaB-mediated transactivation by protein acetylation.
Biochem Pharmacol. 2004 Sep 15;68(6):1221-9. doi: 10.1016/j.bcp.2004.05.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验