Science. 1977 Mar 18;195(4283):1223-9. doi: 10.1126/science.195.4283.1223.
Computers today use a hierarchy of large-capacity, relatively slow mechanically accessed memories in conjunction with fast electronically accessed memories of relatively small capacity. While the gap between these is spanned by ingenious organizations and programming, it would be highly desirable to fill it instead by some device of sufficient capacity and speed. Candidates for gap-filling memories include metal oxide semiconductor (MOS) random-access memories (RAM's) made by large-scale integration (LSI); charge-coupled devices; magnetic bubble devices based on cylindrical domains of magnetization; electron beam-addressed memories; and optical memories based on lasers, holography, and electrooptical effects. At present, the MOS RAM is the prime contender. Its natural evolution and the evolution of magnetic-recording techniques on which mass storage is based are likely to continue to shape the future as they have for more than a decade. On the other hand, radically new technologies, still at an early laboratory stage, are aimed at a more ideal solution than today's hierarchy.
今天的计算机使用大容量、相对较慢的机械访问存储器和高速、相对较小容量的电子访问存储器的层次结构。虽然这些存储器之间的差距通过巧妙的组织和编程得到了弥补,但如果有一种具有足够容量和速度的设备来填补这个差距,那将是非常理想的。可用于填补差距的存储器包括通过大规模集成 (LSI) 制造的金属氧化物半导体 (MOS) 随机存取存储器 (RAM);电荷耦合器件;基于圆柱畴磁化的磁泡器件;电子束寻址存储器;以及基于激光、全息术和电光效应的光学存储器。目前,MOS RAM 是主要的竞争者。它的自然发展以及基于大规模存储的磁记录技术的发展,很可能会像过去十年一样继续塑造未来。另一方面,一些处于早期实验室阶段的、全新的技术,旨在提供比今天的层次结构更理想的解决方案。