Suppr超能文献

简单溶液的依数性。

Colligative properties of simple solutions.

作者信息

Andrews F C

出版信息

Science. 1976 Nov 5;194(4265):567-71. doi: 10.1126/science.194.4265.567.

Abstract

Vapor pressure lowering, osmotic pressure, boiling point elevation, and freezing point depression are all related quantitatively to the decrease in micro(1)(soln) upon the addition of solute in forming a solution. In any equilibrium system, regardless of whether it is in a gravitational field or whether it contains walls, semipermeable membranes, phase transitions, or solutes, all equilibria are maintained locally, in the small region of the equilibrium, by the equality of micro(1)(soln). If there are several subsystems in a gravitational field, at any fixed height, microi will have the same value in each subsystem into which substance i can get, and microi + M(i)gh is constant throughout the entire system. In a solution, there is no mechanism by which solvent and solute molecules could sustain different pressures. Both the solvent and solute are always under identical pressures in a region of solution, namely, the pressure of the solution in that region. Since nature does not know which component we call the solvent and which the solute, equations should be symmetric in the two (acknowledging that the nonvolatile component, if any, is commonly chosen to be solute). Simple molecular pictures illustrate what is happening to cause pressure (positive or negative) in liquids, vapor pressure of liquids, and the various colligative properties of solutions. The only effect of solute involved in these properties is that it dilutes the solvent, with the resulting increase in S and decrease in micro(1)(soln). Water can be driven passively up a tree to enormous heights by the difference between its chemical potential in the roots and the ambient air. There is nothing mysterious about the molecular bases for any of these phenomena. Biologists can use the well-understood pictures of these phenomena with confidence to study what is happening in the complicated living systems they consider.

摘要

蒸气压降低、渗透压、沸点升高和凝固点降低都与形成溶液时加入溶质后微观状态数(1)(溶液)的减少在数量上相关。在任何平衡系统中,无论它是否处于引力场中,也无论它是否包含壁、半透膜、相变或溶质,所有平衡都是通过微观状态数(1)(溶液)的相等在平衡的小区域内局部维持的。如果在引力场中有几个子系统,在任何固定高度,物质i能够进入的每个子系统中微观状态数i将具有相同的值,并且微观状态数i + M(i)gh在整个系统中是恒定的。在溶液中,没有任何机制能使溶剂和溶质分子维持不同的压力。在溶液区域中,溶剂和溶质始终处于相同的压力下,即该区域溶液的压力。由于自然界并不区分我们将哪个组分称为溶剂,哪个称为溶质,所以方程在这两者之间应该是对称的(要知道,如果有非挥发性组分,通常将其选为溶质)。简单的分子图像说明了在液体中产生压力(正或负)、液体的蒸气压以及溶液的各种依数性时发生了什么。这些性质中涉及溶质的唯一作用是它稀释了溶剂,导致熵增加和微观状态数(1)(溶液)减少。水可以通过其在根部的化学势与周围空气的化学势之差被动地被驱动到树上极高的高度。这些现象中的任何一种现象的分子基础都没有什么神秘之处。生物学家可以放心地使用对这些现象的透彻理解的图像来研究他们所研究的复杂生命系统中正在发生的事情。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验