Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
Med Phys. 2007 Jul;34(7):2995-3004. doi: 10.1118/1.2745921.
Mammography is the only technique currently used for detecting microcalcification (MC) clusters, an early indicator of breast cancer. However, mammographic images superimpose a three-dimensional compressed breast image onto two-dimensional projection views, resulting in overlapped anatomical breast structures that may obscure the detection and visualization of MCs. One possible solution to this problem is the use of cone beam computed tomography (CBCT) with a flat-panel (FP) digital detector. Although feasibility studies of CBCT techniques for breast imaging have yielded promising results, they have not shown how radiation dose and x-ray tube voltage affect the accuracy with which MCs are detected by CBCT experimentally. We therefore conducted a phantom study using a FP-based CBCT system with various mean glandular doses and kVp values. An experimental CBCT scanner was constructed with a data acquisition rate of 7.5 frames/s. 10.5 and 14.5 cm diameter breast phantoms made of gelatin were used to simulate uncompressed breasts consisting of 100% glandular tissue. Eight different MC sizes of calcium carbonate grains, ranging from 180-200 microm to 355-425 microm, were used to simulate MCs. MCs of the same size were arranged to form a 5 x 5 MC cluster and embedded in the breast phantoms. These MC clusters were positioned at 2.8 cm away from the center of the breast phantoms. The phantoms were imaged at 60, 80, and 100 kVp. With a single scan (360 degrees), 300 projection images were acquired with 0.5 x, 1x, and 2x mean glandular dose limit for 10.5 cm phantom and with 1x, 2x, and 4x for 14.5 cm phantom. A Feldkamp algorithm with a pure ramp filter was used for image reconstruction. The normalized noise level was calculated for each x-ray tube voltage and dose level. The image quality of the CBCT images was evaluated by counting the number of visible MCs for each MC cluster for various conditions. The average percentage of the visible MCs was computed and plotted as a function of the MGD, the kVp, and the average MC size. The results showed that the MC visibility increased with the MGD significantly but decreased with the breast size. The results also showed that the x-ray tube voltage affects the detection of MCs under different circumstances. With a 50% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 348(+/-2), 288(+/-7), 257(+/-2) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 355 (+/-1), 307 (+/-7), 275 (+/-5) microm at 6, 12, and 24 mGy, respectively. With a 75% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 367 (+/-1), 316 (+/-7), 265 (+/-3) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 377 (+/-3), 334 (+/-5), 300 (+/-2) microm at 6, 12, and 24 mGy, respectively.
乳腺摄影是目前用于检测微钙化簇(MC)的唯一技术,MC 是乳腺癌的早期指标。然而,乳腺 X 光图像将三维压缩的乳腺图像叠加到二维投影视图上,导致重叠的解剖乳腺结构可能会掩盖 MC 的检测和可视化。解决这个问题的一种可能方法是使用带有平板(FP)数字探测器的锥形束计算机断层扫描(CBCT)。虽然用于乳腺成像的 CBCT 技术的可行性研究已经取得了有希望的结果,但它们尚未显示辐射剂量和 X 射线管电压如何影响 CBCT 实验中 MC 的检测准确性。因此,我们使用具有不同平均腺体剂量和 kVp 值的基于 FP 的 CBCT 系统进行了一项体模研究。实验性 CBCT 扫描仪的数据采集速率为 7.5 帧/秒。使用由明胶制成的 10.5 和 14.5 厘米直径的乳腺体模来模拟由 100%腺体组织组成的未压缩乳房。使用 8 种不同大小的碳酸钙颗粒的 MC,大小从 180-200 微米到 355-425 微米,用于模拟 MC。相同大小的 MC 排列成一个 5x5 的 MC 簇并嵌入乳腺体模中。这些 MC 簇位于距乳腺体模中心 2.8 厘米处。体模在 60、80 和 100 kVp 下进行成像。使用单次扫描(360 度),在 10.5 厘米的体模中以 0.5x、1x 和 2x 的腺体剂量限制获得 300 个投影图像,在 14.5 厘米的体模中以 1x、2x 和 4x 获得 300 个投影图像。使用具有纯斜坡滤波器的 Feldkamp 算法进行图像重建。为每个 X 射线管电压和剂量水平计算归一化噪声水平。通过计算每个 MC 簇的可见 MC 的数量来评估 CBCT 图像的图像质量。计算平均可见 MC 的百分比,并绘制为 MGD、kVp 和平均 MC 大小的函数。结果表明,MC 可见度随着 MGD 的显著增加而增加,但随着乳房大小的增加而减小。结果还表明,X 射线管电压会影响不同情况下 MC 的检测。使用 50%的阈值,10.5 厘米体模的最小可检测 MC 大小分别为 348(+/-2)、288(+/-7)和 257(+/-2)微米,在 3、6 和 12 mGy 下。14.5 厘米体模的分别为 355(+/-1)、307(+/-7)和 275(+/-5)微米,在 6、12 和 24 mGy 下。使用 75%的阈值,10.5 厘米体模的最小可检测 MC 大小分别为 367(+/-1)、316(+/-7)和 265(+/-3)微米,在 3、6 和 12 mGy 下。14.5 厘米体模的分别为 377(+/-3)、334(+/-5)和 300(+/-2)微米,在 6、12 和 24 mGy 下。