Bacaër Nicolas, Ouifki Rachid
Institut de Recherche pour le Développement (IRD), 32 avenue Henri Varagnat, 93143, Bondy, France.
Math Biosci. 2007 Dec;210(2):647-58. doi: 10.1016/j.mbs.2007.07.005. Epub 2007 Aug 6.
For continuous-time population models with a periodic factor which is sinusoidal, both the growth rate and the basic reproduction number are shown to be the largest roots of simple equations involving continued fractions. As an example, we reconsider an SEIS model with a fixed latent period, an exponentially distributed infectious period and a sinusoidal contact rate studied in Williams and Dye [B.G. Williams, C. Dye, Infectious disease persistence when transmission varies seasonally, Math. Biosci. 145 (1997) 77]. We show that apart from a few exceptional parameter values, the epidemic threshold depends not only on the mean contact rate, but also on the amplitude of fluctuations.
对于具有正弦形式周期因子的连续时间种群模型,增长率和基本再生数均被证明是涉及连分数的简单方程的最大根。作为一个例子,我们重新考虑Williams和Dye [B.G. Williams, C. Dye, Infectious disease persistence when transmission varies seasonally, Math. Biosci. 145 (1997) 77] 中研究的具有固定潜伏期、指数分布感染期和正弦接触率的SEIS模型。我们表明,除了少数特殊参数值外,流行阈值不仅取决于平均接触率,还取决于波动幅度。