Malgady Robert G
New York University, Steinhardt School of Education, USA.
J Gen Psychol. 2007 Jul;134(3):355-9. doi: 10.3200/GENP.134.3.355-360.
In this article the author discusses the lack of attention given to the concept of skewness in research reported in the general psychological literature. Although the report of descriptive statistics, such as means and standard deviations, is standard practice, skewness is rarely reported. Significance tests are available for determining departure from symmetry and normality, but do not indicate the magnitude of skew. Indexes for standardizing skew have been offered in specialized areas of research, such as structural equation modeling but no standardized index of effect size exists on a unit (0-1) scale for the pragmatic interpretation of the meaning of a given skewness value. Therefore, in this article the author proposes an index that standardizes the raw skewness value relative to its maximum possible value, enabling an interpretation of the mystical raw score value in 0-1 terms. The author discusses utility of the index for general psychological research, and suggestions for future research to provide an empirical basis for establishing effect-size benchmarks of low, medium, and high skewness.
在本文中,作者探讨了普通心理学文献中所报道的研究对偏度概念缺乏关注的问题。尽管诸如均值和标准差等描述性统计数据的报告是标准做法,但偏度却很少被报告。有显著性检验可用于确定偏离对称性和正态性的情况,但并未表明偏度的大小。在诸如结构方程建模等专门研究领域中已经提出了标准化偏度的指标,但对于给定偏度值的含义进行实际解释时,不存在基于单位(0 - 1)尺度的标准化效应量指标。因此,在本文中作者提出了一个指标,该指标相对于其最大可能值对原始偏度值进行标准化,从而能够以0 - 1的形式解释神秘的原始分数值。作者讨论了该指标在普通心理学研究中的效用,以及未来研究的建议,以便为建立低、中、高偏度的效应量基准提供实证依据。