Suppr超能文献

p53 蛋白 DNA 结合结构域的分子动力学模拟

Molecular dynamics simulations of p53 DNA-binding domain.

作者信息

Lu Qiang, Tan Yu-Hong, Luo Ray

机构信息

Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA.

出版信息

J Phys Chem B. 2007 Oct 4;111(39):11538-45. doi: 10.1021/jp0742261. Epub 2007 Sep 8.

Abstract

We have studied room-temperature structural and dynamic properties of the p53 DNA-binding domain in both DNA-bound and DNA-free states. A cumulative 55 ns of explicit solvent molecular dynamics simulations with the particle mesh Ewald treatment of electrostatics was performed. It was found that the mean structures in the production portions of the trajectories agree well with the crystal structure: backbone root-mean-square deviations are in the range of 1.6 and 2.0 A. In both simulations, noticeable backbone deviations from the crystal structure are observed only in loop L6, due to the lack of crystal packing in the simulations. More deviations are observed in the DNA-free simulation, apparently due to the absence of DNA. Computed backbone B-factor is also in qualitative agreement with the crystal structure. Interestingly, little backbone structural change is observed between the mean simulated DNA-bound and DNA-free structures. A notable difference is observed only at the DNA-binding interface. The correlation between native contacts and inactivation mechanisms of tumor mutations is also discussed. In the H2 region, tumor mutations at sites D281, R282, E285, and E286 may weaken five key interactions that stabilize H2, indicating that their inactivation mechanisms may be related to the loss of local structure around H2, which in turn may reduce the overall stability to a measurable amount. In the L2 region, tumor mutations at sites Y163, K164, E171, V173, L194, R249, I251, and E271 are likely to be responsible for the loss of stability in the protein. In addition to apparent DNA contacts that are related to DNA binding, interactions R175/S183, S183/R196, and E198/N235 are highly occupied only in the DNA-bound form, indicating that they are more likely to be responsible for DNA binding.

摘要

我们研究了p53 DNA结合结构域在结合DNA和游离DNA状态下的室温结构和动力学性质。采用粒子网格埃瓦尔德静电处理方法进行了累计55纳秒的显式溶剂分子动力学模拟。结果发现,轨迹生成部分的平均结构与晶体结构吻合良好:主链均方根偏差在1.6至2.0埃范围内。在两个模拟中,仅在环L6中观察到与晶体结构明显的主链偏差,这是由于模拟中缺乏晶体堆积。在游离DNA模拟中观察到更多偏差,显然是由于没有DNA。计算得到的主链B因子也与晶体结构在定性上一致。有趣的是,在模拟的结合DNA和游离DNA的平均结构之间,几乎没有观察到主链结构变化。仅在DNA结合界面观察到显著差异。还讨论了天然接触与肿瘤突变失活机制之间的相关性。在H2区域,位点D281、R282、E285和E286处的肿瘤突变可能会削弱稳定H2的五个关键相互作用,这表明它们的失活机制可能与H2周围局部结构的丧失有关,进而可能将整体稳定性降低到可测量的程度。在L2区域,位点Y163、K164、E171、V(原文有误,推测为V172)、L194、R249、I251和E271处的肿瘤突变可能是导致蛋白质稳定性丧失的原因。除了与DNA结合相关的明显DNA接触外,相互作用R175/S183、S183/R196和E198/N235仅在结合DNA形式中高度占据,表明它们更可能负责DNA结合。 (注:原文中V173推测有误,按照逻辑应该是V172,翻译时进行了修正)

相似文献

1
Molecular dynamics simulations of p53 DNA-binding domain.
J Phys Chem B. 2007 Oct 4;111(39):11538-45. doi: 10.1021/jp0742261. Epub 2007 Sep 8.
2
Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain.
Biochemistry. 2011 Jun 14;50(23):5345-53. doi: 10.1021/bi200192j. Epub 2011 May 17.
3
Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain.
Biochemistry. 2006 Jun 20;45(24):7483-92. doi: 10.1021/bi0603165.
4
Molecular mechanisms of functional rescue mediated by P53 tumor suppressor mutations.
Biophys Chem. 2009 Nov;145(1):37-44. doi: 10.1016/j.bpc.2009.08.008. Epub 2009 Sep 1.
5
Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 core domain.
Nucleic Acids Res. 2002 Apr 1;30(7):1563-74. doi: 10.1093/nar/30.7.1563.
6
Distinct residues of human p53 implicated in binding to DNA, simian virus 40 large T antigen, 53BP1, and 53BP2.
Mol Cell Biol. 1994 Dec;14(12):8315-21. doi: 10.1128/mcb.14.12.8315-8321.1994.
7
Crystal structure of the mouse p53 core DNA-binding domain at 2.7 A resolution.
J Biol Chem. 2001 Apr 13;276(15):12120-7. doi: 10.1074/jbc.M011644200. Epub 2001 Jan 4.
9
Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
J Mol Biol. 2009 Jan 9;385(1):249-65. doi: 10.1016/j.jmb.2008.10.063. Epub 2008 Oct 30.
10
R248Q mutation--Beyond p53-DNA binding.
Proteins. 2015 Dec;83(12):2240-50. doi: 10.1002/prot.24940. Epub 2015 Oct 27.

引用本文的文献

1
Navigating the complexity of p53-DNA binding: implications for cancer therapy.
Biophys Rev. 2024 Jul 11;16(4):479-496. doi: 10.1007/s12551-024-01207-4. eCollection 2024 Aug.
2
Comprehensive Analysis of the Carcinogenic Process, Tumor Microenvironment, and Drug Response in HPV-Positive Cancers.
Front Oncol. 2022 Mar 22;12:842060. doi: 10.3389/fonc.2022.842060. eCollection 2022.
3
Deciphering the mechanisms of HPV E6 mutations in the destabilization of E6/E6AP/p53 complex.
Biophys J. 2022 May 3;121(9):1704-1714. doi: 10.1016/j.bpj.2022.03.030. Epub 2022 Mar 29.
5
Hidden electrostatic energy contributions define dynamic allosteric communications within p53 during molecular recognition.
Biophys J. 2021 Oct 19;120(20):4512-4524. doi: 10.1016/j.bpj.2021.08.037. Epub 2021 Sep 1.
6
Markov state models and NMR uncover an overlooked allosteric loop in p53.
Chem Sci. 2020 Dec 16;12(5):1891-1900. doi: 10.1039/d0sc05053a.
8
Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure.
Protein Sci. 2020 Sep;29(9):1983-1999. doi: 10.1002/pro.3921. Epub 2020 Aug 17.
9
Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies.
J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13.
10

本文引用的文献

1
2
Force field influences in beta-hairpin folding simulations.
Protein Sci. 2006 Nov;15(11):2642-55. doi: 10.1110/ps.062438006.
3
Structural basis for understanding oncogenic p53 mutations and designing rescue drugs.
Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15056-61. doi: 10.1073/pnas.0607286103. Epub 2006 Oct 2.
4
Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations.
J Biol Chem. 2005 Apr 22;280(16):16030-7. doi: 10.1074/jbc.M500179200. Epub 2005 Feb 9.
5
The IARC TP53 database: new online mutation analysis and recommendations to users.
Hum Mutat. 2002 Jun;19(6):607-14. doi: 10.1002/humu.10081.
6
Rescuing the function of mutant p53.
Nat Rev Cancer. 2001 Oct;1(1):68-76. doi: 10.1038/35094077.
7
Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein.
Hum Mutat. 2002 Feb;19(2):149-64. doi: 10.1002/humu.10032.
8
Zinc binding and redox control of p53 structure and function.
Antioxid Redox Signal. 2001 Aug;3(4):611-23. doi: 10.1089/15230860152542961.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验