Min Donghong, Liu Yusong, Carbone Irina, Yang Wei
School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA.
J Chem Phys. 2007 May 21;126(19):194104. doi: 10.1063/1.2731769.
As a popular tool in exploring free energy landscapes, the metadynamics method has been widely applied to elucidate various chemical or biochemical processes. As deeply discussed by Laio et al. [J. Phys. Chem. B 109, 6714 (2005)], the size of the updating Gaussian function is pivotal to the free energy convergence toward the target free energy surface. For instance, a greater Gaussian height can facilitate the quick visit of a conformation region of interest; however, it may lead to a larger error of the calculated free energy surface. In contrast, a lower Gaussian height can guarantee a better resolution of the calculated free energy surface; however, it will take longer time for such a simulation to navigate through the defined conformational region. In order to reconcile such confliction, the authors present a method by implementing the Wang-Landau recursion scheme in the metadynamics simulations to adaptively update the height of the unit Gaussian function. As demonstrated in their model studies on both a toy system, and a realistic molecular system treated with the hybrid quantum mechanical and molecular mechanical (QMMM) potential, the present approach can quickly result in more decently converged free energy surfaces, compared with the classical metadynamics simulations employing the fixed Gaussian heights.
作为探索自由能景观的一种常用工具,元动力学方法已被广泛应用于阐明各种化学或生物化学过程。正如拉约等人[《物理化学杂志B》109, 6714 (2005)]深入讨论的那样,更新高斯函数的大小对于自由能向目标自由能面的收敛至关重要。例如,较大的高斯高度可以促进对感兴趣的构象区域的快速访问;然而,这可能会导致计算出的自由能面有较大误差。相比之下,较低的高斯高度可以保证计算出的自由能面有更好的分辨率;然而,这样的模拟在定义的构象区域中导航需要更长的时间。为了调和这种冲突,作者提出了一种在元动力学模拟中实施王 - 兰道递归方案以自适应更新单位高斯函数高度的方法。正如在他们对一个玩具系统以及一个用混合量子力学和分子力学(QMMM)势处理的实际分子系统的模型研究中所表明的那样,与采用固定高斯高度的经典元动力学模拟相比,本方法可以快速产生收敛性更好的自由能面。