Suppr超能文献

在没有目标人群的情况下估计因果参数。

Estimating causal parameters without target populations.

作者信息

Shahar Eyal

机构信息

Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.

出版信息

J Eval Clin Pract. 2007 Oct;13(5):814-6. doi: 10.1111/j.1365-2753.2007.00796.x.

Abstract

RATIONALE

In recent years, numerous research methodologists have argued forcefully that any estimated effect from an observational study or a randomized trial should apply to a 'target population'- to a finite group of people. Some methods to adjust for confounders heavily draw upon this idea.

AIMS AND OBJECTIVES

I cite a recently published paper in The American Journal of Epidemiology that linked methods to adjust for confounders to the concept of a 'target population'. I explain that the requirement to specify a finite population as the target of causal inference is rooted in two extreme models of causation: determinism and stochastic causation.

CONCLUSIONS

I argue that the 'target population' epistemology is scientifically irrelevant and so are methods to handle confounders that are founded on this paradigm, namely, standardization, inverse-probability-of-treatment weighting and SMR-weighting. Finally, I propose a simple alternative framework under an indeterministic model of causation. According to my proposed model, a causal parameter is not tied to any finite population and its estimate is a (fallible) scientific conjecture about a homogeneous, individual-level effect.

摘要

理论依据

近年来,众多研究方法学家有力地指出,观察性研究或随机试验得出的任何估计效应都应适用于“目标人群”——一个有限的人群组。一些调整混杂因素的方法很大程度上借鉴了这一理念。

目的与目标

我引用了最近发表在《美国流行病学杂志》上的一篇论文,该论文将调整混杂因素的方法与“目标人群”的概念联系起来。我解释说,将有限人群指定为因果推断目标的要求源于两种极端的因果模型:决定论和随机因果关系。

结论

我认为“目标人群”认识论在科学上是无关紧要的,基于这一范式处理混杂因素的方法也是如此,即标准化、治疗逆概率加权和标准化死亡比加权。最后,我在非确定性因果模型下提出了一个简单的替代框架。根据我提出的模型,因果参数不与任何有限人群相关联,其估计是关于同质个体水平效应的(可能有误的)科学推测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验