Liang Li-Jung, Weiss Robert E
Department of Biostatistics, UCLA School of Public Health, Los Angeles, California 90095-1772, USA.
Biometrics. 2007 Sep;63(3):733-41. doi: 10.1111/j.1541-0420.2007.00753.x.
Phylogenetic modeling is computationally challenging and most phylogeny models fit a single phylogeny to a single set of molecular sequences. Individual phylogenetic analyses are typically performed independently using publicly available software that fits a computationally intensive Bayesian model using Markov chain Monte Carlo (MCMC) simulation. We develop a Bayesian hierarchical semiparametric regression model to combine multiple phylogenetic analyses of HIV-1 nucleotide sequences and estimate parameters of interest within and across analyses. We use a mixture of Dirichlet processes as a prior for the parameters to relax inappropriate parametric assumptions and to ensure the prior distribution for the parameters is continuous. We use several reweighting algorithms for combining completed MCMC analyses to shrink parameter estimates while adjusting for data set-specific covariates. This avoids constructing a large complex model involving all the original data, which would be computationally challenging and would require rewriting the existing stand-alone software.
系统发育建模在计算上具有挑战性,并且大多数系统发育模型将单个系统发育树与一组分子序列进行拟合。个体系统发育分析通常使用公开可用的软件独立进行,该软件使用马尔可夫链蒙特卡罗(MCMC)模拟来拟合计算密集型贝叶斯模型。我们开发了一种贝叶斯分层半参数回归模型,以结合对HIV-1核苷酸序列的多个系统发育分析,并估计分析内部和分析之间的感兴趣参数。我们使用狄利克雷过程的混合作为参数的先验,以放宽不适当的参数假设,并确保参数的先验分布是连续的。我们使用几种重新加权算法来组合已完成的MCMC分析,以在调整数据集特定协变量的同时收缩参数估计。这避免了构建一个涉及所有原始数据的大型复杂模型,这在计算上具有挑战性,并且需要重写现有的独立软件。