Albert Paul S
Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda Maryland 20892, USA.
Biometrics. 2007 Sep;63(3):947-57. doi: 10.1111/j.1541-0420.2006.00734.x.
Interest often focuses on estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Various authors have proposed semilatent class modeling approaches for estimating diagnostic accuracy in this situation. This article presents imputation approaches for this problem. I show how imputation provides a simpler way of performing diagnostic accuracy and prevalence estimation than the use of semilatent modeling. Furthermore, the imputation approach is more robust to modeling assumptions and, in general, there is only a moderate efficiency loss relative to a correctly specified semilatent class model. I apply imputation to a study designed to estimate the diagnostic accuracy of digital radiography for gastric cancer. The feasibility and robustness of imputation is illustrated with analysis, asymptotic results, and simulations.
在金标准评估成本高昂或具有侵入性的情况下,人们常常关注于估计一组评估者或一系列新诊断测试的敏感性和特异性。许多作者提出了半潜类别建模方法来估计这种情况下的诊断准确性。本文提出了解决此问题的插补方法。我展示了插补如何提供一种比使用半潜建模更简单的进行诊断准确性和患病率估计的方法。此外,插补方法对建模假设更具稳健性,并且一般来说,相对于正确设定的半潜类别模型,效率损失仅为中等程度。我将插补应用于一项旨在估计数字射线照相术对胃癌诊断准确性的研究。通过分析、渐近结果和模拟说明了插补的可行性和稳健性。