Suppr超能文献

在体外和植物体内对桑萎蔫病菌产生的一种胞外多糖的检测与可视化

Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta.

作者信息

Roper M Caroline, Greve L Carl, Labavitch John M, Kirkpatrick Bruce C

机构信息

Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA.

出版信息

Appl Environ Microbiol. 2007 Nov;73(22):7252-8. doi: 10.1128/AEM.00895-07. Epub 2007 Sep 7.

Abstract

Many phytopathogenic bacteria, such as Ralstonia solanacearum, Pantoea stewartii, and Xanthomonas campestris, produce exopolysaccharides (EPSs) that aid in virulence, colonization, and survival. EPS can also contribute to host xylem vessel blockage. The genome of Xylella fastidiosa, the causal agent of Pierce's disease (PD) of grapevine, contains an operon that is strikingly similar to the X. campestris gum operon, which is responsible for the production of xanthan gum. Based on this information, it has been hypothesized that X. fastidiosa is capable of producing an EPS similar in structure and composition to xanthan gum but lacking the terminal mannose residue. In this study, we raised polyclonal antibodies against a modified xanthan gum polymer similar to the predicted X. fastidiosa EPS polymer. We used enzyme-linked immunosorbent assay to quantify production of EPS from X. fastidiosa cells grown in vitro and immunolocalization microscopy to examine the distribution of X. fastidiosa EPS in biofilms formed in vitro and in planta and assessed the contribution of X. fastidiosa EPS to the vascular occlusions seen in PD-infected grapevines.

摘要

许多植物病原细菌,如青枯雷尔氏菌、斯氏泛菌和野油菜黄单胞菌,都会产生有助于致病、定殖和存活的胞外多糖(EPSs)。EPS也会导致宿主木质部导管堵塞。葡萄皮尔氏病(PD)的致病因子——苛养木杆菌的基因组中含有一个操纵子,该操纵子与负责产生黄原胶的野油菜黄单胞菌的胶操纵子惊人地相似。基于这一信息,有人推测苛养木杆菌能够产生一种结构和成分与黄原胶相似但缺少末端甘露糖残基的EPS。在本研究中,我们制备了针对一种与预测的苛养木杆菌EPS聚合物相似的修饰黄原胶聚合物的多克隆抗体。我们使用酶联免疫吸附测定法来量化体外培养的苛养木杆菌细胞产生EPS的量,并使用免疫定位显微镜来检查苛养木杆菌EPS在体外和植物体内形成的生物膜中的分布,并评估苛养木杆菌EPS对PD感染葡萄藤中出现的血管堵塞的作用。

相似文献

1
Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta.
Appl Environ Microbiol. 2007 Nov;73(22):7252-8. doi: 10.1128/AEM.00895-07. Epub 2007 Sep 7.
5
Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity.
FEMS Microbiol Lett. 2001 Sep 25;203(2):165-71. doi: 10.1111/j.1574-6968.2001.tb10836.x.
6
Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.
FEMS Microbiol Lett. 2010 Mar;304(1):82-8. doi: 10.1111/j.1574-6968.2009.01885.x. Epub 2010 Dec 19.
7
Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera.
Appl Environ Microbiol. 2003 Dec;69(12):7319-27. doi: 10.1128/AEM.69.12.7319-7327.2003.
8
Csp1, a Cold Shock Protein Homolog in Xylella fastidiosa Influences Cell Attachment, Pili Formation, and Gene Expression.
Microbiol Spectr. 2021 Dec 22;9(3):e0159121. doi: 10.1128/Spectrum.01591-21. Epub 2021 Nov 17.
9
Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.
Mol Plant Microbe Interact. 2011 Oct;24(10):1198-206. doi: 10.1094/MPMI-10-10-0252.
10
Virulence Comparison of a Comprehensive Panel of Pierce's Disease Isolates from California.
Plant Dis. 2024 Jun;108(6):1555-1564. doi: 10.1094/PDIS-09-23-1923-RE. Epub 2024 May 16.

引用本文的文献

1
Reply to Almeida, "Unreliable evidence to support a vector regulation hypothesis for -leafhopper interactions".
Appl Environ Microbiol. 2025 Aug 20;91(8):e0088925. doi: 10.1128/aem.00889-25. Epub 2025 Jul 31.
3
Complementary roles of EPS, T3SS and Expansin for virulence of , the causative agent of cucurbit wilt.
bioRxiv. 2024 Jun 25:2024.06.24.600446. doi: 10.1101/2024.06.24.600446.
4
modulates exopolysaccharide polymer length and the dynamics of biofilm development with a β-1,4-endoglucanase.
mBio. 2023 Oct 31;14(5):e0139523. doi: 10.1128/mbio.01395-23. Epub 2023 Oct 13.
5
Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to Resistance?
Pathogens. 2023 Jun 12;12(6):825. doi: 10.3390/pathogens12060825.
6
Susceptible and resistant olive cultivars show differential physiological response to infections.
Front Plant Sci. 2022 Sep 20;13:968934. doi: 10.3389/fpls.2022.968934. eCollection 2022.
7
Microorganism-derived biological macromolecules for tissue engineering.
Front Med. 2022 Jun;16(3):358-377. doi: 10.1007/s11684-021-0903-0. Epub 2022 Jun 10.
8
Evidence for Seed Transmission of in Pecan ().
Front Plant Sci. 2022 Apr 8;13:780335. doi: 10.3389/fpls.2022.780335. eCollection 2022.
10
Functionalized microchannels as xylem-mimicking environment: Quantifying X. fastidiosa cell adhesion.
Biophys J. 2021 Apr 20;120(8):1443-1453. doi: 10.1016/j.bpj.2021.02.009. Epub 2021 Feb 17.

本文引用的文献

1
Characterization of Biofilm Formation by Xylella fastidiosa In Vitro.
Plant Dis. 2002 Jun;86(6):633-638. doi: 10.1094/PDIS.2002.86.6.633.
2
Involvement of bacterial polysaccharides in plant pathogenesis.
Annu Rev Phytopathol. 1995;33:173-97. doi: 10.1146/annurev.py.33.090195.001133.
3
Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.
Mol Plant Microbe Interact. 2007 Apr;20(4):411-9. doi: 10.1094/MPMI-20-4-0411.
4
Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli.
Curr Microbiol. 2006 Sep;53(3):198-203. doi: 10.1007/s00284-005-0475-2. Epub 2006 Jul 27.
7
Gene expression analysis of six GC-rich Gram-negative phytopathogens.
Biochem Biophys Res Commun. 2005 Jul 1;332(2):380-7. doi: 10.1016/j.bbrc.2005.04.128.
9
Biofilms: the matrix revisited.
Trends Microbiol. 2005 Jan;13(1):20-6. doi: 10.1016/j.tim.2004.11.006.
10
Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.
FEMS Microbiol Lett. 2004 Aug 15;237(2):341-53. doi: 10.1016/j.femsle.2004.06.055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验