Suppr超能文献

使用临床分类树识别孕期性传播感染风险个体。

Using clinical classification trees to identify individuals at risk of STDs during pregnancy.

作者信息

Kershaw Trace S, Lewis Jessica, Westdahl Claire, Wang Yun F, Rising Sharon Schindler, Massey Zohar, Ickovics Jeannette

机构信息

Department of Epidemiology and Public Health, and the Center for Interdisciplinary Research on AIDS, Yale University, New Haven, CT, USA.

出版信息

Perspect Sex Reprod Health. 2007 Sep;39(3):141-8. doi: 10.1363/3914107.

Abstract

CONTEXT

Few studies have used classification tree analysis to produce empirically driven decision tools that identify subgroups of women at risk of STDs during pregnancy. Such tools can guide care, treatment and prevention efforts in clinical settings.

METHODS

A sample of 647 women aged 14-25 attending two urban obstetrics and gynecology clinics in 2001-2004 were surveyed in their second and third trimesters. Baseline predictors at the individual, dyad, and family and community levels were used to develop a classification tree that differentiated subgroups of women by STD incidence at 35 weeks' gestation. Logistic regression analyses were conducted to assess whether the classification tree groups or commonly used risk factors better predicted STD incidence.

RESULTS

Nineteen percent of women had an incident STD during pregnancy. Classification tree analysis identified three subgroups with a high STD incidence (33-61%), one with a moderate incidence (16%) and three with a low incidence (6-11%). Women in subgroups with high STD incidence included those not living with the partner with whom they conceived and those who had a moderate or a high level of depression, a history of STDs and a low level of social support. A logistic regression model using groups defined by the classification tree analysis had better predictive ability than one using common demographic and sexual risk predictors.

CONCLUSION

This classification tree identified risk factors not captured by traditional risk screenings, and could be used to guide STD treatment, care and prevention within the prenatal care setting.

摘要

背景

很少有研究使用分类树分析来生成基于经验的决策工具,以识别孕期有性传播疾病(STD)风险的女性亚组。此类工具可指导临床环境中的护理、治疗和预防工作。

方法

2001年至2004年期间,对在两家城市妇产科诊所就诊的647名年龄在14至25岁之间的女性进行了调查,调查时间为她们怀孕的第二和第三个孕期。使用个体、二元组以及家庭和社区层面的基线预测因素来构建一个分类树,该分类树根据妊娠35周时的性传播疾病发病率区分女性亚组。进行逻辑回归分析以评估分类树分组或常用风险因素是否能更好地预测性传播疾病发病率。

结果

19%的女性在孕期发生了性传播疾病。分类树分析确定了三个性传播疾病高发病率亚组(33%-61%)、一个中等发病率亚组(16%)和三个低发病率亚组(6%-11%)。性传播疾病高发病率亚组中的女性包括那些未与受孕伴侣同住的女性,以及那些有中度或高度抑郁、性传播疾病病史且社会支持水平较低的女性。使用分类树分析定义的分组构建的逻辑回归模型比使用常见人口统计学和性风险预测因素构建的模型具有更好的预测能力。

结论

该分类树识别出了传统风险筛查未涵盖的风险因素,可用于指导产前护理环境中的性传播疾病治疗、护理和预防。

相似文献

引用本文的文献

5
Family and relationship influences on parenting behaviors of young parents.家庭及人际关系对年轻父母养育行为的影响。
J Adolesc Health. 2014 Feb;54(2):197-203. doi: 10.1016/j.jadohealth.2013.08.012. Epub 2013 Oct 8.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验