Suppr超能文献

BM3 E:用于视觉跟踪的判别密度传播

BM3 E: discriminative density propagation for visual tracking.

作者信息

Sminchisescu Cristian, Kanaujia Atul, Metaxas Dimitris N

机构信息

Toyota Technological Institute-Chicago, University of Chicago, 1427 East 60th Street, Second Floor, Chicago, IL 60637, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):2030-44. doi: 10.1109/TPAMI.2007.1111.

Abstract

We introduce BM3 E, a Conditional Bayesian Mixture of Experts Markov Model, for consistent probabilistic estimates in discriminative visual tracking. The model applies to problems of temporal and uncertain inference and represents the unexplored bottom-up counterpart of pervasive generative models estimated with Kalman filtering or particle filtering. Instead of inverting a non-linear generative observation model at run-time, we learn to cooperatively predict complex state distributions directly from descriptors that encode image observations - typically bag-of-feature global image histograms or descriptors computed over regular spatial grids. These are integrated in a conditional graphical model in order to enforce temporal smoothness constraints and allow a principled management of uncertainty. The algorithms combine sparsity, mixture modeling, and non-linear dimensionality reduction for efficient computation in high-dimensional continuous state spaces. The combined system automatically self-initializes and recovers from failure. The research has three contributions: (1) We establish the density propagation rules for discriminative inference in continuous, temporal chain models; (2) We propose flexible supervised and unsupervised algorithms for learning feedforward, multivalued contextual mappings (multimodal state distributions) based on compact, conditional Bayesian mixture of experts models; (3) We validate the framework empirically for the reconstruction of 3d human motion in monocular video sequences. Our tests on both real and motion capture-based sequences show significant performance gains with respect to competing nearest-neighbor, regression, and structured prediction methods.

摘要

我们引入了BM3 E,一种条件贝叶斯专家混合马尔可夫模型,用于在判别式视觉跟踪中进行一致的概率估计。该模型适用于时间和不确定推理问题,并且代表了通过卡尔曼滤波或粒子滤波估计的普遍生成模型尚未探索的自下而上的对应物。我们不是在运行时对非线性生成观测模型求逆,而是学习直接从编码图像观测的描述符(通常是特征袋全局图像直方图或在规则空间网格上计算的描述符)协同预测复杂的状态分布。这些描述符被集成到一个条件图形模型中,以强制时间平滑约束并允许对不确定性进行有原则的管理。该算法结合了稀疏性、混合建模和非线性降维,以便在高维连续状态空间中进行高效计算。组合系统能自动自我初始化并从故障中恢复。该研究有三个贡献:(1)我们为连续时间链模型中的判别推理建立了密度传播规则;(2)我们基于紧凑的条件贝叶斯专家混合模型,提出了灵活的监督和无监督算法,用于学习前馈、多值上下文映射(多模态状态分布);(3)我们通过实验验证了该框架在单目视频序列中重建三维人体运动的能力。我们对真实序列和基于运动捕捉的序列进行的测试表明,相对于竞争的最近邻、回归和结构化预测方法,性能有显著提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验