Suppr超能文献

基于细胞神经网络和三维模板匹配的乳腺磁共振图像分割与病变检测

Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching.

作者信息

Ertaş Gökhan, Gülçür H Ozcan, Osman Onur, Uçan Osman N, Tunaci Mehtap, Dursun Memduh

机构信息

Biomedical Engineering Institute, Bogaziçi University, Bebek 34342, Istanbul, Turkey.

出版信息

Comput Biol Med. 2008 Jan;38(1):116-26. doi: 10.1016/j.compbiomed.2007.08.001. Epub 2007 Sep 12.

Abstract

A novel fully automated system is introduced to facilitate lesion detection in dynamic contrast-enhanced, magnetic resonance mammography (DCE-MRM). The system extracts breast regions from pre-contrast images using a cellular neural network, generates normalized maximum intensity-time ratio (nMITR) maps and performs 3D template matching with three layers of 12x12 cells to detect lesions. A breast is considered to be properly segmented when relative overlap >0.85 and misclassification rate <0.10. Sensitivity, false-positive rate per slice and per lesion are used to assess detection performance. The system was tested with a dataset of 2064 breast MR images (344slicesx6 acquisitions over time) from 19 women containing 39 marked lesions. Ninety-seven percent of the breasts were segmented properly and all the lesions were detected correctly (detection sensitivity=100%), however, there were some false-positive detections (31%/lesion, 10%/slice).

摘要

介绍了一种新型全自动系统,以促进动态对比增强磁共振乳腺成像(DCE-MRM)中的病变检测。该系统使用细胞神经网络从造影前图像中提取乳腺区域,生成归一化最大强度-时间比(nMITR)图,并与三层12x12细胞进行三维模板匹配以检测病变。当相对重叠>0.85且错误分类率<0.10时,认为乳腺已正确分割。灵敏度、每切片和每病变的假阳性率用于评估检测性能。该系统用来自19名女性的2064幅乳腺MR图像(随时间344切片x6次采集)的数据集进行测试,其中包含39个标记病变。97%的乳腺被正确分割,所有病变均被正确检测(检测灵敏度=100%),然而,存在一些假阳性检测(31%/病变,10%/切片)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验