Suppr超能文献

Making four- and two-component relativistic density functional methods fully equivalent based on the idea of "from atoms to molecule".

作者信息

Peng Daoling, Liu Wenjian, Xiao Yunlong, Cheng Lan

机构信息

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China.

出版信息

J Chem Phys. 2007 Sep 14;127(10):104106. doi: 10.1063/1.2772856.

Abstract

It is shown that four- and two-component relativistic Kohn-Sham methods of density functional theory can be made fully equivalent in all the aspects of simplicity, accuracy, and efficiency. In particular, this has been achieved based solely on physical arguments rather than on mathematical tricks. The central idea can be visualized as "from atoms to molecule," reflecting that the atomic information is employed to "synthesize" the molecular no-pair relativistic Hamiltonian. That is, the molecular relativistic Hamiltonian can, without loss of accuracy, be projected onto the positive energy states of the isolated Dirac atoms with the projector approximated simply by the superposition of the atomic ones. The dimension of the four-component Hamiltonian matrix then becomes the same as that of a two-component one. Another essential ingredient is to formulate quasirelativistic theory on matrix form rather than on operator form. The resultant quasi-four-component, normalized elimination of the small component, and symmetrized elimination of the small component approaches are critically examined by taking the molecules of MH and M(2) (M=At, E117) as examples.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验