Suppr超能文献

使用吉布斯抽样和残差最大似然法对模拟马群中的多变量阈值和连续数据进行遗传参数估计及育种值预测。

Estimation of genetic parameters and prediction of breeding values for multivariate threshold and continuous data in a simulated horse population using Gibbs sampling and residual maximum likelihood.

作者信息

Stock K F, Hoeschele I, Distl O

机构信息

Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), Hannover, Germany.

出版信息

J Anim Breed Genet. 2007 Oct;124(5):308-19. doi: 10.1111/j.1439-0388.2007.00666.x.

Abstract

Simulated horse data were used to compare multivariate estimation of genetic parameters and prediction of breeding values (BV) for categorical, continuous and molecular genetic data using linear animal models via residual maximum likelihood (REML) and best linear unbiased prediction (BLUP) and mixed linear-threshold animal models via Gibbs sampling (GS). Simulation included additive genetic values, residuals and fixed effects for one continuous trait, liabilities of four binary traits, and quantitative trait locus (QTL) effects and genetic markers with different recombination rates and polymorphism information content for one of the liabilities. Analysed data sets differed in the number of animals with trait records and availability of genetic marker information. Consideration of genetic marker information in the model resulted in marked overestimation of the heritability of the QTL trait. If information on 10,000 or 5,000 animals was used, bias of heritabilities and additive genetic correlations was mostly smaller, correlation between true and predicted BV was always higher and identification of genetically superior and inferior animals was - with regard to the moderately heritable traits, in many cases - more reliable with GS than with REML/BLUP. If information on only 1,000 animals was used, neither GS nor REML/BLUP produced genetic parameter estimates with relative bias <or=25% and BV correlation >50% for all traits. Selection decisions for binary traits should rather be based on GS than on REML/BLUP breeding values.

摘要

利用模拟马数据,通过残差最大似然法(REML)和最佳线性无偏预测法(BLUP)的线性动物模型以及通过吉布斯抽样(GS)的混合线性阈值动物模型,比较分类、连续和分子遗传数据的遗传参数多变量估计和育种值(BV)预测。模拟包括一个连续性状的加性遗传值、残差和固定效应,四个二元性状的 liability,以及一个 liability 的具有不同重组率和多态信息含量的数量性状位点(QTL)效应和遗传标记。分析的数据集在具有性状记录的动物数量和遗传标记信息的可用性方面存在差异。在模型中考虑遗传标记信息导致对QTL性状遗传力的明显高估。如果使用10000或5000只动物的信息,遗传力和加性遗传相关性的偏差大多较小,真实BV与预测BV之间的相关性总是更高,并且对于中等遗传力性状,在许多情况下,与REML/BLUP相比,GS在识别遗传上优良和劣质动物方面更可靠。如果仅使用1000只动物的信息,对于所有性状,GS和REML/BLUP都不会产生相对偏差≤25%且BV相关性>50%的遗传参数估计值。对于二元性状的选择决策,应更多地基于GS而不是REML/BLUP育种值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验