Miller J Richard, Ohren Jeffrey, Sarver Ronald W, Mueller W Thomas, de Dreu Piet, Case Heather, Thanabal Venkataraman
Department of Antibacterial Biology, Assay Technologies, Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA.
J Bacteriol. 2007 Nov;189(22):8196-205. doi: 10.1128/JB.00732-07. Epub 2007 Sep 14.
Phosphopantetheine adenylyltransferase (PPAT) from Escherichia coli is an essential hexameric enzyme that catalyzes the penultimate step in coenzyme A (CoA) biosynthesis and is a target for antibacterial drug discovery. The enzyme utilizes Mg-ATP and phosphopantetheine (PhP) to generate dephospho-CoA (dPCoA) and pyrophosphate. When overexpressed in E. coli, PPAT copurifies with tightly bound CoA, suggesting a feedback inhibitory role for this cofactor. Using an enzyme-coupled assay for the forward-direction reaction (dPCoA-generating) and isothermal titration calorimetry, we investigated the steady-state kinetics and ligand binding properties of PPAT. All substrates and products bind the free enzyme, and product inhibition studies are consistent with a random bi-bi kinetic mechanism. CoA inhibits PPAT and is competitive with ATP, PhP, and dPCoA. Previously published structures of PPAT crystallized at pH 5.0 show half-the-sites reactivity for PhP and dPCoA and full occupancy by ATP and CoA. Ligand-binding studies at pH 8.0 show that ATP, PhP, dPCoA, and CoA occupy all six monomers of the PPAT hexamer, although CoA exhibits two thermodynamically distinct binding modes. These results suggest that the half-the-sites reactivity observed in PPAT crystal structures may be pH dependent. In light of previous studies on the regulation of CoA biosynthesis, the PPAT kinetic and ligand binding data suggest that intracellular PhP concentrations modulate the distribution of PPAT monomers between high- and low-affinity CoA binding modes. This model is consistent with PPAT serving as a "backup" regulator of pathway flux relative to pantothenate kinase.
来自大肠杆菌的磷酸泛酰巯基乙胺腺苷酰转移酶(PPAT)是一种必需的六聚体酶,它催化辅酶A(CoA)生物合成的倒数第二步反应,是抗菌药物研发的一个靶点。该酶利用Mg-ATP和磷酸泛酰巯基乙胺(PhP)生成脱磷酸辅酶A(dPCoA)和焦磷酸。当在大肠杆菌中过表达时,PPAT与紧密结合的CoA共纯化,表明该辅因子具有反馈抑制作用。我们使用一种酶偶联测定法来检测正向反应(生成dPCoA),并通过等温滴定量热法研究了PPAT的稳态动力学和配体结合特性。所有底物和产物都能与游离酶结合,产物抑制研究结果与随机双底物双产物动力学机制一致。CoA抑制PPAT,并且与ATP、PhP和dPCoA存在竞争性。之前发表的在pH 5.0条件下结晶的PPAT结构显示,PhP和dPCoA具有半位点反应性,而ATP和CoA完全占据位点。在pH 8.0条件下的配体结合研究表明,ATP、PhP、dPCoA和CoA占据了PPAT六聚体的所有六个单体,尽管CoA表现出两种热力学上不同的结合模式。这些结果表明,在PPAT晶体结构中观察到的半位点反应性可能依赖于pH值。鉴于之前关于CoA生物合成调控的研究,PPAT的动力学和配体结合数据表明,细胞内PhP浓度调节PPAT单体在高亲和力和低亲和力CoA结合模式之间的分布。该模型与PPAT作为相对于泛酸激酶的途径通量“备用”调节因子的作用一致。