Aravanis Alexander M, Wang Li-Ping, Zhang Feng, Meltzer Leslie A, Mogri Murtaza Z, Schneider M Bret, Deisseroth Karl
Department of Bioengineering, Stanford University Medical Center, Stanford, CA 94305, USA.
J Neural Eng. 2007 Sep;4(3):S143-56. doi: 10.1088/1741-2560/4/3/S02. Epub 2007 May 31.
Neural interface technology has made enormous strides in recent years but stimulating electrodes remain incapable of reliably targeting specific cell types (e.g. excitatory or inhibitory neurons) within neural tissue. This obstacle has major scientific and clinical implications. For example, there is intense debate among physicians, neuroengineers and neuroscientists regarding the relevant cell types recruited during deep brain stimulation (DBS); moreover, many debilitating side effects of DBS likely result from lack of cell-type specificity. We describe here a novel optical neural interface technology that will allow neuroengineers to optically address specific cell types in vivo with millisecond temporal precision. Channelrhodopsin-2 (ChR2), an algal light-activated ion channel we developed for use in mammals, can give rise to safe, light-driven stimulation of CNS neurons on a timescale of milliseconds. Because ChR2 is genetically targetable, specific populations of neurons even sparsely embedded within intact circuitry can be stimulated with high temporal precision. Here we report the first in vivo behavioral demonstration of a functional optical neural interface (ONI) in intact animals, involving integrated fiberoptic and optogenetic technology. We developed a solid-state laser diode system that can be pulsed with millisecond precision, outputs 20 mW of power at 473 nm, and is coupled to a lightweight, flexible multimode optical fiber, approximately 200 microm in diameter. To capitalize on the unique advantages of this system, we specifically targeted ChR2 to excitatory cells in vivo with the CaMKIIalpha promoter. Under these conditions, the intensity of light exiting the fiber ( approximately 380 mW mm(-2)) was sufficient to drive excitatory neurons in vivo and control motor cortex function with behavioral output in intact rodents. No exogenous chemical cofactor was needed at any point, a crucial finding for in vivo work in large mammals. Achieving modulation of behavior with optical control of neuronal subtypes may give rise to fundamental network-level insights complementary to what electrode methodologies have taught us, and the emerging optogenetic toolkit may find application across a broad range of neuroscience, neuroengineering and clinical questions.
近年来,神经接口技术取得了巨大进展,但刺激电极仍无法可靠地靶向神经组织内的特定细胞类型(如兴奋性或抑制性神经元)。这一障碍具有重大的科学和临床意义。例如,医生、神经工程师和神经科学家们就是否在深部脑刺激(DBS)过程中募集了相关细胞类型存在激烈争论;此外,DBS的许多使人衰弱的副作用可能是由于缺乏细胞类型特异性所致。我们在此描述一种新型的光学神经接口技术,它将使神经工程师能够在体内以毫秒级的时间精度光学靶向特定细胞类型。我们开发的用于哺乳动物的藻类光激活离子通道Channelrhodopsin-2(ChR2),能够在毫秒级的时间尺度上对中枢神经系统神经元进行安全的、光驱动的刺激。由于ChR2具有基因靶向性,即使是稀疏地嵌入完整神经回路中的特定神经元群体也能以高时间精度进行刺激。在此,我们报告了在完整动物中首次进行的功能性光学神经接口(ONI)的体内行为学演示,该演示涉及集成光纤和光遗传学技术。我们开发了一种固态激光二极管系统,它能够以毫秒精度进行脉冲输出,在473nm波长处输出20mW的功率,并与一根直径约200微米的轻质、柔性多模光纤耦合。为了利用该系统独特的优势,我们使用CaMKIIalpha启动子在体内将ChR2特异性靶向兴奋性细胞。在这些条件下,从光纤射出的光强度(约380mW·mm(-2))足以在体内驱动兴奋性神经元,并通过完整啮齿动物的行为输出控制运动皮层功能。在任何时候都不需要外源性化学辅助因子,这对于大型哺乳动物的体内研究来说是一个关键发现。通过对神经元亚型进行光学控制来实现行为调节,可能会产生与电极方法所带给我们的见解互补的基础网络层面的见解,并且新兴的光遗传学工具包可能会在广泛的神经科学、神经工程和临床问题中得到应用。