Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA.
Prog Brain Res. 2012;196:29-47. doi: 10.1016/B978-0-444-59426-6.00002-1.
Classically, temporally precise excitation of membrane potential in neurons within intact tissue can be achieved by direct electrical stimulation or indirect electrical stimulation induced by changing magnetic fields. Both of these approaches have a predetermined selectivity based on the biophysical properties of the nervous tissue and membrane in the region of the stimulation. A recent advance in selective excitation of neurons is the "optogenetic" approach utilizing channelrhodopsins (ChRs). By expressing the light-responsive ChR in neurons using cell-type selective promoters or other methods, specific neurons can be depolarized by light in a temporally precise manner with millisecond resolution even if their membrane biophysical properties are less favorable for electrical stimulation. In addition, ChRs can be used to depolarize nonneuronal cells in the nervous tissue, and to sustain depolarization over a prolonged period of time, both of which cannot be achieved with electrical or magnetic stimulations. To conduct an experiment with ChR, experimenters need to make the correct choices on the three main components to such an experiment: the expression system, the illumination source, and the ChR variant used. This chapter aims to provide some discussions on the current developments of these aspects of the experiments. To express ChR in neurons, the common expression systems include viral vectors, in utero electroporation, and transgenic animals, each with their advantages and limitations regarding the cost, expression pattern, and the required effort. In terms of the instrumentation, an illumination source that is capable of providing the desired wavelength with high intensity is crucial for the success of the experiment. The important factors regarding the light source used include the cost, light density output, efficiency for fiber coupling for in vivo rodent experiments, and the available methods to control light intensity and onset/termination. The third component of the experiment is the choice of the appropriate variants of ChR. Many novel ChR variants with unique properties have been engineered, and it can be difficult for the experimenters to choose the right variant with the desired properties for their experiments, as some information necessary for the experimenter to make the right selection is often incomplete or unavailable. Currently, the available variants for neuroscientific research are wild-type ChR2, ChR2+H134R, ChETA, VChR1, SFO, ChD, ChEF, ChIEF, ChRGR, CatCh, and TC. The features and limitations of these different variants are presented here. Lastly, this chapter will provide some suggestion for the future development of the light source, expression system, and the development of the "next" generation of ChRs.
传统上,可以通过直接电刺激或通过改变磁场间接电刺激来实现完整组织内神经元膜电位的时间精确激发。这两种方法都基于刺激区域的神经组织和膜的生物物理特性具有预定的选择性。神经元选择性激发的最新进展是利用通道视紫红质(ChR)的“光遗传学”方法。通过使用细胞类型特异性启动子或其他方法在神经元中表达光响应型 ChR,可以以毫秒级的分辨率以时间精确的方式使特定神经元去极化,即使它们的膜生物物理特性不利于电刺激。此外,ChR 可用于使神经组织中的非神经元细胞去极化,并维持长时间的去极化,而这两种方法都不能用电或磁刺激来实现。要进行 ChR 实验,实验者需要在实验的三个主要组成部分(表达系统、照明源和使用的 ChR 变体)上做出正确的选择。本章旨在对这些方面的实验的当前发展提供一些讨论。为了在神经元中表达 ChR,常用的表达系统包括病毒载体、子宫内电穿孔和转基因动物,它们在成本、表达模式和所需工作量方面都有各自的优缺点。在仪器方面,能够提供所需波长和高强度的照明源对于实验的成功至关重要。关于光源使用的重要因素包括成本、光密度输出、用于体内啮齿动物实验的光纤耦合效率以及控制光强度和起始/终止的可用方法。实验的第三个组成部分是选择合适的 ChR 变体。已经设计了许多具有独特特性的新型 ChR 变体,对于实验者来说,选择具有所需特性的正确变体可能会很困难,因为实验者做出正确选择所需的一些信息往往是不完整或不可用的。目前,可用于神经科学研究的变体有野生型 ChR2、ChR2+H134R、ChETA、VChR1、SFO、ChD、ChEF、ChIEF、ChRGR、CatCh 和 TC。这里介绍了这些不同变体的特点和局限性。最后,本章将为光源、表达系统的未来发展以及“下一代”ChR 的开发提供一些建议。