Minin Vladimir N, Suchard Marc A
Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
J Math Biol. 2008 Mar;56(3):391-412. doi: 10.1007/s00285-007-0120-8. Epub 2007 Sep 14.
Counting processes that keep track of labeled changes to discrete evolutionary traits play critical roles in evolutionary hypothesis testing. If we assume that trait evolution can be described by a continuous-time Markov chain, then it suffices to study the process that counts labeled transitions of the chain. For a binary trait, we demonstrate that it is possible to obtain closed-form analytic solutions for the probability mass and probability generating functions of this evolutionary counting process. In the general, multi-state case we show how to compute moments of the counting process using an eigen decomposition of the infinitesimal generator, provided the latter is a diagonalizable matrix. We conclude with two examples that demonstrate the utility of our results.
记录离散进化特征标记变化的计数过程在进化假设检验中起着关键作用。如果我们假设特征进化可以用连续时间马尔可夫链来描述,那么研究对链的标记转移进行计数的过程就足够了。对于二元特征,我们证明了对于这个进化计数过程的概率质量和概率生成函数,可以得到封闭形式的解析解。在一般的多状态情况下,我们展示了如何使用无穷小生成器的特征分解来计算计数过程的矩,前提是后者是一个可对角化矩阵。我们以两个例子结束,展示了我们结果的实用性。