Suppr超能文献

具有米氏消除动力学和治疗窗的一室模型:一种分析方法。

One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window: an analytical approach.

作者信息

Tang Sanyi, Xiao Yanni

机构信息

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, PR China.

出版信息

J Pharmacokinet Pharmacodyn. 2007 Dec;34(6):807-27. doi: 10.1007/s10928-007-9070-4. Epub 2007 Sep 15.

Abstract

The purpose of this article is to provide the analytical solutions of one-compartment models with Michaelis-Menten elimination kinetics for three different inputs (single intravenous dose, multiple-dose bolus injection and constant). All analytical solutions obtained in present paper can be described by the well defined Lambert W function which can be easily implemented in most mathematical softwares such as Matlab and Maple. These results will play an important role in fitting the Michaelis-Menten parameters and in designing a dosing regimen to maintain steady-state plasma concentrations. In particular, the analytical periodic solution for multi-dose inputs is also given, and we note that the maximum and minimum values of the periodic solution depends on the Michaelis-Menten parameters, dose and time interval of drug administration. In practice, it is important to maintain a concentration above the minimum therapeutic level at all times without exceeding the minimum toxic concentration. Therefore, the one-compartment model with therapeutic window is proposed, and further the existence of periodic solution, analytical expression and its period are analyzed. The analytical formula of period plays a key role in designing a dose regimen to maintain the plasma concentration within a specified range over long periods of therapy. Finally, the completely analytical solution for the constant input rate is derived and discussed which depends on the relations between constant input rate and maximum rate of change of concentration.

摘要

本文的目的是提供具有米氏消除动力学的单室模型针对三种不同输入(单次静脉注射剂量、多次静脉推注和恒速输入)的解析解。本文获得的所有解析解都可以用定义明确的朗伯W函数来描述,该函数在大多数数学软件(如Matlab和Maple)中都能轻松实现。这些结果在拟合米氏参数以及设计给药方案以维持稳态血浆浓度方面将发挥重要作用。特别地,还给出了多剂量输入的解析周期解,并且我们注意到周期解的最大值和最小值取决于米氏参数、给药剂量和时间间隔。在实际应用中,始终保持浓度高于最低治疗水平且不超过最低中毒浓度非常重要。因此,提出了具有治疗窗的单室模型,并进一步分析了周期解的存在性、解析表达式及其周期。周期的解析公式在设计给药方案以在长期治疗中将血浆浓度维持在指定范围内起着关键作用。最后,推导并讨论了恒速输入的完全解析解,它取决于恒速输入与浓度最大变化率之间的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验