Suppr超能文献

病虫害综合防治(IPM)策略的状态依赖脉冲模型及其动态后果。

State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences.

作者信息

Tang Sanyi, Cheke Robert A

机构信息

Mathematics Institute, University of Warwick, UK.

出版信息

J Math Biol. 2005 Mar;50(3):257-92. doi: 10.1007/s00285-004-0290-6. Epub 2004 Oct 7.

Abstract

A state-dependent impulsive model is proposed for integrated pest management (IPM). IPM involves combining biological, mechanical, and chemical tactics to reduce pest numbers to tolerable levels after a pest population has reached its economic threshold (ET). The complete expression of an orbitally asymptotically stable periodic solution to the model with a maximum value no larger than the given ET is presented, the existence of which implies that pests can be controlled at or below their ET levels. We also prove that there is no periodic solution with order larger than or equal to three, except for one special case, by using the properties of the LambertW function and Poincare map. Moreover, we show that the existence of an order two periodic solution implies the existence of an order one periodic solution. Various positive invariant sets and attractors of this impulsive semi-dynamical system are described and discussed. In particular, several horseshoe-like attractors, whose interiors can simultaneously contain stable order 1 periodic solutions and order 2 periodic solutions, are found and the interior structure of the horseshoe-like attractors is discussed. Finally, the largest invariant set and the sufficient conditions which guarantee the global orbital and asymptotic stability of the order 1 periodic solution in the meaningful domain for the system are given using the Lyapunov function. Our results show that, in theory, a pest can be controlled such that its population size is no larger than its ET by applying effects impulsively once, twice, or at most, a finite number of times, or according to a periodic regime. Moreover, our theoretical work suggests how IPM strategies could be used to alter the levels of the ET in the farmers' favour.

摘要

提出了一种用于病虫害综合防治(IPM)的状态依赖脉冲模型。病虫害综合防治包括在害虫种群达到经济阈值(ET)后,结合生物、物理和化学策略将害虫数量降低到可容忍水平。给出了该模型的一个轨道渐近稳定周期解的完整表达式,其最大值不大于给定的ET,该周期解的存在意味着害虫可以被控制在或低于其ET水平。我们还通过使用兰伯特W函数和庞加莱映射的性质证明,除了一种特殊情况外,不存在阶数大于或等于3的周期解。此外,我们表明二阶周期解的存在意味着一阶周期解的存在。描述并讨论了这个脉冲半动力系统的各种正不变集和吸引子。特别地,发现了几个马蹄形吸引子,其内部可以同时包含稳定的一阶周期解和二阶周期解,并讨论了马蹄形吸引子的内部结构。最后,利用李雅普诺夫函数给出了系统在有意义域内保证一阶周期解全局轨道稳定性和渐近稳定性的最大不变集和充分条件。我们的结果表明,理论上,通过一次性、两次或最多有限次脉冲作用,或根据周期性机制施加作用,可以控制害虫,使其种群数量不大于其ET。此外,我们的理论工作还提出了如何利用病虫害综合防治策略来改变经济阈值水平,以利于农民。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验