Suppr超能文献

使用线性动力学系统模型预测转录组和代谢组中的状态转变。

Predicting state transitions in the transcriptome and metabolome using a linear dynamical system model.

作者信息

Morioka Ryoko, Kanaya Shigehiko, Hirai Masami Y, Yano Mitsuru, Ogasawara Naotake, Saito Kazuki

机构信息

RIKEN Plant Science Center, Yokohama, Kanagawa, Japan.

出版信息

BMC Bioinformatics. 2007 Sep 18;8:343. doi: 10.1186/1471-2105-8-343.

Abstract

BACKGROUND

Modelling of time series data should not be an approximation of input data profiles, but rather be able to detect and evaluate dynamical changes in the time series data. Objective criteria that can be used to evaluate dynamical changes in data are therefore important to filter experimental noise and to enable extraction of unexpected, biologically important information.

RESULTS

Here we demonstrate the effectiveness of a Markov model, named the Linear Dynamical System, to simulate the dynamics of a transcript or metabolite time series, and propose a probabilistic index that enables detection of time-sensitive changes. This method was applied to time series datasets from Bacillus subtilis and Arabidopsis thaliana grown under stress conditions; in the former, only gene expression was studied, whereas in the latter, both gene expression and metabolite accumulation. Our method not only identified well-known changes in gene expression and metabolite accumulation, but also detected novel changes that are likely to be responsible for each stress response condition.

CONCLUSION

This general approach can be applied to any time-series data profile from which one wishes to identify elements responsible for state transitions, such as rapid environmental adaptation by an organism.

摘要

背景

时间序列数据建模不应是对输入数据概况的近似,而应能够检测和评估时间序列数据中的动态变化。因此,可用于评估数据动态变化的客观标准对于过滤实验噪声以及提取意外的、具有生物学重要性的信息至关重要。

结果

在此我们展示了一种名为线性动态系统的马尔可夫模型在模拟转录本或代谢物时间序列动态方面的有效性,并提出了一种能够检测时间敏感变化的概率指标。该方法应用于在胁迫条件下生长的枯草芽孢杆菌和拟南芥的时间序列数据集;在前者中,仅研究了基因表达,而在后者中,同时研究了基因表达和代谢物积累。我们的方法不仅识别出了基因表达和代谢物积累中众所周知的变化,还检测到了可能与每种胁迫反应条件相关的新变化。

结论

这种通用方法可应用于任何时间序列数据概况,从中人们希望识别负责状态转变的元素,例如生物体对环境的快速适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee8c/2080644/65cecd6a4c52/1471-2105-8-343-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验