Suppr超能文献

活性氧、DNA损伤与易出错修复:髓系白血病进展过程中基因组不稳定的一种模型?

Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?

作者信息

Rassool Feyruz V, Gaymes Terry J, Omidvar Nader, Brady Nicola, Beurlet Stephanie, Pla Marika, Reboul Murielle, Lea Nicholas, Chomienne Christine, Thomas Nicholas S B, Mufti Ghulam J, Padua Rose Ann

机构信息

Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509, USA.

出版信息

Cancer Res. 2007 Sep 15;67(18):8762-71. doi: 10.1158/0008-5472.CAN-06-4807.

Abstract

Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.

摘要

骨髓增生异常综合征(MDS)是一组异质性疾病,其特征为造血无效,并具有发展为急性髓系白血病(AML)的更高倾向。MDS进展的分子基础尚不清楚,但MDS疾病进展的一个关键因素是染色体物质的丢失(基因组不稳定)。利用我们的涉及人类突变NRAS和BCL2基因过表达的髓系白血病疾病进展两步小鼠模型,我们发现导致双链断裂(DSB)通过非同源末端连接进行易出错修复频率增加的DNA损伤频率呈逐步上升。随着疾病进展,这些转基因小鼠体内的活性氧(ROS)也随之增加。重要的是,RAC1是产生ROS的NADPH氧化酶的重要组成部分,位于RAS下游,我们发现NRAS/BCL2小鼠体内的ROS产生部分依赖于RAC1活性。通过N-乙酰半胱氨酸抗氧化剂治疗可在体内减少或逆转DNA损伤和易出错修复。我们的数据将基因异常与体内持续性DNA损伤和增加的DSB修复错误联系起来,并为随着MDS疾病进展DNA修复错误率增加提供了一种机制。这些数据提示了针对人类MDS/AML中RAS/RAC途径和ROS产生的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验