Rassool Feyruz V, Gaymes Terry J, Omidvar Nader, Brady Nicola, Beurlet Stephanie, Pla Marika, Reboul Murielle, Lea Nicholas, Chomienne Christine, Thomas Nicholas S B, Mufti Ghulam J, Padua Rose Ann
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509, USA.
Cancer Res. 2007 Sep 15;67(18):8762-71. doi: 10.1158/0008-5472.CAN-06-4807.
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.
骨髓增生异常综合征(MDS)是一组异质性疾病,其特征为造血无效,并具有发展为急性髓系白血病(AML)的更高倾向。MDS进展的分子基础尚不清楚,但MDS疾病进展的一个关键因素是染色体物质的丢失(基因组不稳定)。利用我们的涉及人类突变NRAS和BCL2基因过表达的髓系白血病疾病进展两步小鼠模型,我们发现导致双链断裂(DSB)通过非同源末端连接进行易出错修复频率增加的DNA损伤频率呈逐步上升。随着疾病进展,这些转基因小鼠体内的活性氧(ROS)也随之增加。重要的是,RAC1是产生ROS的NADPH氧化酶的重要组成部分,位于RAS下游,我们发现NRAS/BCL2小鼠体内的ROS产生部分依赖于RAC1活性。通过N-乙酰半胱氨酸抗氧化剂治疗可在体内减少或逆转DNA损伤和易出错修复。我们的数据将基因异常与体内持续性DNA损伤和增加的DSB修复错误联系起来,并为随着MDS疾病进展DNA修复错误率增加提供了一种机制。这些数据提示了针对人类MDS/AML中RAS/RAC途径和ROS产生的治疗策略。