Suppr超能文献

蛋白质环构象结构精修中自导朗之万动力学与分子动力学模拟的比较。

Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.

机构信息

Department of Cell Biology and Biochemistry, US Army Medical Research Institute of Infectious Diseases, Fredrick, Maryland 21702, USA.

出版信息

J Comput Chem. 2011 Nov 15;32(14):3014-22. doi: 10.1002/jcc.21883. Epub 2011 Jul 25.

Abstract

This article presents a comparative analysis of two replica-exchange simulation methods for the structure refinement of protein loop conformations, starting from low-resolution predictions. The methods are self-guided Langevin dynamics (SGLD) and molecular dynamics (MD) with a Nosé-Hoover thermostat. We investigated a small dataset of 8- and 12-residue loops, with the shorter loops placed initially from a coarse-grained lattice model and the longer loops from an enumeration assembly method (the Loopy program). The CHARMM22 + CMAP force field with a generalized Born implicit solvent model (molecular-surface parameterized GBSW2) was used to explore conformational space. We also assessed two empirical scoring methods to detect nativelike conformations from decoys: the all-atom distance-scaled ideal-gas reference state (DFIRE-AA) statistical potential and the Rosetta energy function. Among the eight-residue loop targets, SGLD out performed MD in all cases, with a median of 0.48 Å reduction in global root-mean-square deviation (RMSD) of the loop backbone coordinates from the native structure. Among the more challenging 12-residue loop targets, SGLD improved the prediction accuracy over MD by a median of 1.31 Å, representing a substantial improvement. The overall median RMSD for SGLD simulations of 12-residue loops was 0.91 Å, yielding refinement of a median 2.70 Å from initial loop placement. Results from DFIRE-AA and the Rosetta model applied to rescoring conformations failed to improve the overall detection calculated from the CHARMM force field. We illustrate the advantage of SGLD over the MD simulation model by presenting potential-energy landscapes for several loop predictions. Our results demonstrate that SGLD significantly outperforms traditional MD in the generation and populating of nativelike loop conformations and that the CHARMM force field performs comparably to other empirical force fields in identifying these conformations from the resulting ensembles.

摘要

本文对两种用于蛋白质环构象结构精修的复制交换模拟方法进行了比较分析,这些方法都是基于低分辨率预测的。这两种方法分别是自导向朗之万动力学(SGLD)和分子动力学(MD),均采用诺瑟-胡佛恒温器。我们研究了一个由 8 个和 12 个残基环组成的小数据集,其中较短的环最初来自粗粒度晶格模型,而较长的环则来自枚举组装方法(Loopy 程序)。我们使用 CHARMM22 + CMAP 力场和广义 Born 隐溶剂模型(分子表面参数化 GBSW2)来探索构象空间。我们还评估了两种经验评分方法,以从诱饵中检测到天然构象:全原子距离缩放理想气体参考状态(DFIRE-AA)统计势能和 Rosetta 能量函数。在 8 个残基环目标中,SGLD 在所有情况下都优于 MD,其环骨架坐标与天然结构的全局均方根偏差(RMSD)平均降低了 0.48 Å。在更具挑战性的 12 个残基环目标中,SGLD 相对于 MD 提高了预测精度,平均提高了 1.31 Å,这是一个实质性的改进。SGLD 模拟 12 个残基环的整体中位数 RMSD 为 0.91 Å,与初始环放置相比,平均精修 2.70 Å。应用于重新评分构象的 DFIRE-AA 和 Rosetta 模型的结果未能提高从 CHARMM 力场计算的整体检测。我们通过展示几个环预测的势能景观,说明了 SGLD 相对于 MD 模拟模型的优势。我们的结果表明,SGLD 在生成和填充天然环构象方面明显优于传统 MD,并且 CHARMM 力场在从结果集合中识别这些构象方面与其他经验力场相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验