Suppr超能文献

体内混合伏安法信号的数学解析。模型、设备、通过同步微透析采样进行评估。

Mathematical resolution of mixed in vivo voltammetry signals. Models, equipment, assessment by simultaneous microdialysis sampling.

作者信息

Gonzalez-Mora J L, Guadalupe T, Fumero B, Mas M

机构信息

Department of Physiology, University of La Laguna, Tenerife, Spain.

出版信息

J Neurosci Methods. 1991 Oct;39(3):231-44. doi: 10.1016/0165-0270(91)90102-6.

Abstract

A microcomputer-assisted curve-fitting procedure was developed for the quantitative estimation of the components of the mixed "catechol peak" recorded with differential normal pulse voltammetry (DNPV) at electrochemically pretreated carbon fiber microelectrodes in the living brain. The contribution of each of the relevant electroactive species is fitted by a normal probability function, the parameters of which are previously determined in vitro for each electrode and substance. The voltammogram is thus modeled as a mixture of normal curves corresponding to the individual oxidizable substances plus a low order polynomial approximating the baseline. In a former approach the function was solved by linear least squares techniques. As a further improvement, we now propose a non-linear model of the voltammogram and a Gauss-Newton iterative algorithm with stepwise regression for parameter estimation. This report shows the application of the method for the resolution of the dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) components of the DNPV signal recorded from the striatum of freely moving animals in response to amphetamine and pargyline. The method was validated by the chemical assay of contralateral microdialysates collected simultaneously. The changes detected by both methodologies were closely parallel, with highly significant correlation coefficients (0.87 and 0.99 for DA and DOPAC, respectively, P less than 0.001). This study further illustrates that the in vivo voltammetry methodology can be improved substantially by incorporating a suitable mathematical treatment of the electrochemical signals.

摘要

开发了一种微机辅助曲线拟合程序,用于定量估计在活体大脑中经电化学预处理的碳纤维微电极上,采用差分正常脉冲伏安法(DNPV)记录的混合“儿茶酚峰”的成分。每种相关电活性物质的贡献通过正态概率函数进行拟合,其参数先前已在体外针对每个电极和物质确定。因此,伏安图被建模为对应于各个可氧化物质的正态曲线的混合物,再加上一个近似基线的低阶多项式。在之前的方法中,该函数通过线性最小二乘法求解。作为进一步的改进,我们现在提出一种伏安图的非线性模型以及一种带有逐步回归的高斯 - 牛顿迭代算法用于参数估计。本报告展示了该方法在解析自由活动动物纹状体中记录的DNPV信号的多巴胺(DA)和二羟基苯乙酸(DOPAC)成分方面的应用,这些信号是对苯丙胺和优降宁的反应。该方法通过同时收集的对侧微透析液的化学分析进行了验证。两种方法检测到的变化密切平行,相关系数高度显著(DA和DOPAC分别为0.87和0.99,P小于0.001)。这项研究进一步表明,通过对电化学信号进行适当的数学处理,体内伏安法可以得到显著改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验