Dai Z Q, Wang R, Ling S K, Wan Y M, Li Y H
China Astronaut Research and Training Center, Laboratory of Space Cell and Molecular Biology, Beijing, China.
Cell Prolif. 2007 Oct;40(5):671-84. doi: 10.1111/j.1365-2184.2007.00461.x.
Microgravity is known to affect the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, a few controversial findings have recently been reported with respect to the effects of microgravity on BMSC proliferation. Thus, we investigated the effects of simulated microgravity on rat BMSC (rBMSC) proliferation and their osteogeneic potential.
rBMSCs isolated from marrow using our established effective method, based on erythrocyte lysis, were identified by their surface markers and their proliferation characteristics under normal conditions. Then, they were cultured in a clinostat to simulate microgravity, with or without growth factors, and in osteogenic medium. Subsequently, proliferation and cell cycle parameters were assessed using methylene blue staining and flow cytometry, respectively; gene expression was determined using Western blotting and microarray analysis.
Simulated microgravity inhibited population growth of the rBMSCs, cells being arrested in the G(0)/G(1) phase of cell cycle. Growth factors, such as insulin-like growth factor-I, epidermal growth factor and basic fibroblastic growth factor, markedly stimulated rBMSC proliferation in normal gravity, but had only a slight effect in simulated microgravity. Akt and extracellular signal-related kinase 1/2 phosphorylation levels and the expression of core-binding factor alpha1 decreased after 3 days of clinorotation culture. Microarray and gene ontology analyses further confirmed that rBMSC proliferation and osteogenesis decreased under simulated microgravity.
The above data suggest that simulated microgravity inhibits population growth of rBMSCs and their differentiation towards osteoblasts. These changes may be responsible for some of the physiological changes noted during spaceflight.
已知微重力会影响骨髓间充质干细胞(BMSC)的分化。然而,最近关于微重力对BMSC增殖的影响有一些有争议的发现。因此,我们研究了模拟微重力对大鼠BMSC(rBMSC)增殖及其成骨潜能的影响。
使用我们基于红细胞裂解建立的有效方法从骨髓中分离出的rBMSC,通过其表面标志物及其在正常条件下的增殖特性进行鉴定。然后,将它们置于回转器中培养以模拟微重力,添加或不添加生长因子,并在成骨培养基中培养。随后,分别使用亚甲蓝染色和流式细胞术评估增殖和细胞周期参数;使用蛋白质印迹法和微阵列分析确定基因表达。
模拟微重力抑制了rBMSC的群体生长,细胞停滞在细胞周期的G(0)/G(1)期。胰岛素样生长因子-I、表皮生长因子和碱性成纤维细胞生长因子等生长因子在正常重力下能显著刺激rBMSC增殖,但在模拟微重力下作用轻微。回转培养3天后,Akt和细胞外信号调节激酶1/2的磷酸化水平以及核心结合因子α1的表达降低。微阵列和基因本体分析进一步证实,在模拟微重力下rBMSC的增殖和成骨能力下降。
上述数据表明,模拟微重力抑制了rBMSC的群体生长及其向成骨细胞的分化。这些变化可能是太空飞行期间出现的一些生理变化的原因。