Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China.
National Center of Space Science, Chinese Academy of Sciences, Beijing, China.
FASEB J. 2018 Aug;32(8):4444-4458. doi: 10.1096/fj.201700208RR. Epub 2018 Mar 13.
Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly decreased the expression of Tribbles homolog 3 ( TRIB3), a repressor of adipogenic differentiation. Y15, a specific inhibitor of FAK activity, was used to inhibit the activity of FAK under normal gravity; Y15 decreased protein expression of TRIB3. Therefore, it appears that space microgravity decreased FAK activity and thereby reduced TRIB3 expression and derepressed AKT activity. Under space microgravity, the increase in p38 MAPK activity and the derepression of AKT activity seem to synchronously lead to the activation of the signaling pathway specifically promoting adipogenesis.-Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., Wang, J. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.
成骨作用与骨髓间充质干细胞(MSCs)的成骨分化有关。众所周知,太空中的微重力会减少骨形成。在这项研究中,我们使用 SJ-10 可回收科学卫星的真实微重力环境来研究太空微重力对人骨髓间充质干细胞(hMSC)成骨分化的影响。在细胞培养装置上安装了 SJ-10 卫星,将 hMSC 诱导为成骨分化 2 和 7 天。卫星在轨道上进行了 12 天的空间实验后返回地球,并采集细胞样本进行分化潜力分析。结果表明,即使在成骨诱导条件下,太空微重力也会抑制成骨分化并导致脂肪生成分化。在太空微重力下,10 个特定骨生成的基因表达降低,包括胶原家族成员、碱性磷酸酶(ALP)和 runt 相关转录因子 2(RUNX2),而 4 个特定脂肪生成的基因表达增加,包括脂肪酶(LEP)、载脂蛋白 E(APOE)、内脂素(ADPN)、瘦素(LEP)、CCAAT/增强子结合蛋白-β(CEBPB)和过氧化物酶体增殖物激活受体-γ(PPARG)。在分析特定成骨信号通路时,我们发现 RUNX2 的表达和活性受到抑制,骨形态发生蛋白-2(BMP2)的表达和 SMAD1/5/9 的活性降低,整合素/FAK/ERK 途径的粘着斑激酶(FAK)和 ERK-1/2 的活性显著下降。这些数据表明,太空微重力通过 BMP2/SMAD 和整合素/FAK/ERK 途径降低 RUNX2 的表达和活性,发挥双重作用。此外,我们发现太空微重力增加了 p38 MAPK 和蛋白激酶 B(AKT)的活性,这对于促进 hMSC 的脂肪生成分化很重要。太空微重力显著降低了脂肪生成分化抑制剂 Tribbles 同源物 3(TRIB3)的表达。Y15 是 FAK 活性的特异性抑制剂,用于在常重力下抑制 FAK 的活性;Y15 降低了 TRIB3 的蛋白表达。因此,似乎是太空微重力降低了 FAK 活性,从而降低了 TRIB3 的表达并解除了 AKT 的活性抑制。在微重力下,p38 MAPK 活性的增加和 AKT 活性的解除似乎同步导致专门促进脂肪生成的信号通路的激活。