Ling Jiqiang, Roy Hervé, Qin Daoming, Rubio Mary Anne T, Alfonzo Juan D, Fredrick Kurt, Ibba Michael
Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, USA.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15299-304. doi: 10.1073/pnas.0704441104. Epub 2007 Sep 18.
Human mitochondrial tRNA (hmt-tRNA) mutations are associated with a variety of diseases including mitochondrial myopathies, diabetes, encephalopathies, and deafness. Because the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. Here, we use a variety of known mutations in hmt-tRNA(Phe) to investigate the mechanisms that lead to malfunctions. We tested the impact of hmt-tRNA(Phe) mutations on aminoacylation, structure, and translation elongation-factor binding. The majority of the mutants were pleiotropic, exhibiting defects in aminoacylation, global structure, and elongation-factor binding. One notable exception was the G34A anticodon mutation of hmt-tRNA(Phe) (mitochondrial DNA mutation G611A), which is associated with MERRF (myoclonic epilepsy with ragged red fibers). In vitro, the G34A mutation decreases aminoacylation activity by 100-fold, but does not affect global folding or recognition by elongation factor. Furthermore, G34A hmt-tRNA(Phe) does not undergo adenosine-to-inosine (A-to-I) editing, ruling out miscoding as a possible mechanism for mitochondrial malfunction. To improve the aminoacylation state of the mutant tRNA, we modified the tRNA binding domain of the nucleus-encoded human mitochondrial phenylalanyl-tRNA synthetase, which aminoacylates hmt-tRNA(Phe) with cognate phenylalanine. This variant enzyme displayed significantly improved aminoacylation efficiency for the G34A mutant, suggesting a general strategy to treat certain classes of mitochondrial diseases by modification of the corresponding nuclear gene.
人类线粒体tRNA(hmt-tRNA)突变与多种疾病相关,包括线粒体肌病、糖尿病、脑病和耳聋。由于目前对这些突变的确切分子机制的了解有限,因此没有有效的方法来治疗与其相关的线粒体疾病。在这里,我们使用hmt-tRNA(Phe)中的多种已知突变来研究导致功能障碍的机制。我们测试了hmt-tRNA(Phe)突变对氨酰化、结构和翻译延伸因子结合的影响。大多数突变体具有多效性,在氨酰化、整体结构和延伸因子结合方面表现出缺陷。一个显著的例外是hmt-tRNA(Phe)的G34A反密码子突变(线粒体DNA突变G611A),它与肌阵挛性癫痫伴破碎红纤维(MERRF)相关。在体外,G34A突变使氨酰化活性降低100倍,但不影响整体折叠或延伸因子的识别。此外,G34A hmt-tRNA(Phe)不会发生腺苷到次黄苷(A-to-I)编辑,排除了错义编码作为线粒体功能障碍的一种可能机制。为了改善突变tRNA的氨酰化状态,我们修饰了核编码的人类线粒体苯丙氨酰-tRNA合成酶的tRNA结合结构域,该合成酶用同源苯丙氨酸对hmt-tRNA(Phe)进行氨酰化。这种变体酶对G34A突变体的氨酰化效率有显著提高,这表明通过修饰相应的核基因来治疗某些类型线粒体疾病的一般策略。