Malavazi Iran, Savoldi Marcela, da Silva Ferreira Márcia Eliana, Soriani Frederico Marianetti, Bonato Pierina Sueli, de Souza Goldman Maria Helena, Goldman Gustavo H
Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
Mol Microbiol. 2007 Oct;66(1):74-99. doi: 10.1111/j.1365-2958.2007.05885.x.
ATM is a phosphatidyl-3-kinase-related protein kinase that functions as a central regulator of DNA damage response in eukaryotes. In humans, mutations in ATM cause the devastating neurodegenerative disease Ataxia-Telangiectasia. Previously, we characterized the homologue of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we found that AtmA is also required for polarized hyphal growth. Our results suggested that AtmA probably regulates the function and/or localization of landmark proteins required for the formation of a polarity axis. Here, we extended these studies by investigating which pathways are influenced by AtmA during proliferation and polar growth by comparatively determining the transcriptional profile of A. nidulans wild-type and DeltaatmA mutant strains in different growth conditions. Our results indicate an important role of the pentose phosphate pathway in the fungal proliferation during endogenous DNA damage and polar growth monitored by the AtmA kinase. Furthermore, we identified several genes that have decreased mRNA expression in the DeltaatmA mutant that are involved in the formation of a polarized hyphae and control of polar growth; in the synthesis of phosphatidic acid (e.g. phospholipase D); in the ergosterol biosynthesis (plasma membrane microdomains, lipid rafts); and in intracellular trafficking.
ATM是一种磷脂酰-3-激酶相关蛋白激酶,在真核生物中作为DNA损伤反应的核心调节因子发挥作用。在人类中,ATM基因的突变会导致严重的神经退行性疾病共济失调毛细血管扩张症。此前,我们鉴定了丝状真菌构巢曲霉中ATM的同源物(AtmA)。除了其在DNA损伤反应中的预期作用外,我们还发现AtmA对于极化菌丝生长也是必需的。我们的结果表明,AtmA可能调节形成极性轴所需的标志性蛋白的功能和/或定位。在此,我们通过比较确定构巢曲霉野生型和ΔatmA突变体菌株在不同生长条件下的转录谱,研究了AtmA在增殖和极性生长过程中影响哪些途径,从而扩展了这些研究。我们的结果表明,磷酸戊糖途径在由AtmA激酶监测的内源性DNA损伤和极性生长期间的真菌增殖中起着重要作用。此外,我们鉴定了几个在ΔatmA突变体中mRNA表达降低的基因,这些基因参与极化菌丝的形成和极性生长的控制;参与磷脂酸的合成(如磷脂酶D);参与麦角固醇的生物合成(质膜微结构域、脂筏);以及参与细胞内运输。