Suppr超能文献

基于图形处理器(GPU)的流架构用于快速锥束计算机断层扫描(CT)图像重建和戴蒙斯可变形配准。

GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration.

作者信息

Sharp G C, Kandasamy N, Singh H, Folkert M

机构信息

Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

Phys Med Biol. 2007 Oct 7;52(19):5771-83. doi: 10.1088/0031-9155/52/19/003. Epub 2007 Sep 10.

Abstract

This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.

摘要

本文展示了如何使用流处理模型显著加速锥束CT重建和三维可变形图像配准。我们描述了适用于商用图形处理单元的Feldkamp、Davis和Kress(FDK)重建算法以及demons可变形配准算法的数据并行设计。这些算法的流版本是使用Brook编程环境实现的,并在NVIDIA 8800 GPU上执行。使用保存的猪肺CT数据的性能结果表明,与在2.8 GHz英特尔处理器上的优化参考实现相比,基于GPU的FDK和demons算法实现实现了大幅加速——FDK高达80倍,demons高达70倍。此外,发现基于GPU的实现的准确性非常出色。与基于CPU的实现相比,重建的均方根差异小于0.1亨氏单位,可变形配准的均方根差异小于0.1毫米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验