Suppr超能文献

基于空间编码非局部惩罚的低剂量 CT 重建。

Low-dose CT reconstruction using spatially encoded nonlocal penalty.

机构信息

Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street 6th floor, Suite 660, Boston, MA, 02114, USA.

出版信息

Med Phys. 2017 Oct;44(10):e376-e390. doi: 10.1002/mp.12523.

Abstract

PURPOSE

Computed tomography (CT) is one of the most used imaging modalities for imaging both symptomatic and asymptomatic patients. However, because of the high demand for lower radiation dose during CT scans, the reconstructed image can suffer from noise and artifacts due to the trade-off between the image quality and the radiation dose. The purpose of this paper is to improve the image quality of quarter dose images and to select the best hyperparameters using the regular dose image as ground truth.

METHODS

We first generated the axially stacked two-dimensional sinograms from the multislice raw projections with flying focal spots using a single slice rebinning method, which is an axially approximate method to provide simple implementation and efficient memory usage. To improve the image quality, a cost function containing the Poisson log-likelihood and spatially encoded nonlocal penalty is proposed. Specifically, an ordered subsets separable quadratic surrogates (OS-SQS) method for the log-likelihood is exploited and the patch-based similarity constraint with a spatially variant factor is developed to reduce the noise significantly while preserving features. Furthermore, we applied the Nesterov's momentum method for acceleration and the diminishing number of subsets strategy for noise consistency. Fast nonlocal weight calculation is also utilized to reduce the computational cost.

RESULTS

Datasets given by the Low Dose CT Grand Challenge were used for the validation, exploiting the training datasets with the regular and quarter dose data. The most important step in this paper was to fine-tune the hyperparameters to provide the best image for diagnosis. Using the regular dose filtered back-projection (FBP) image as ground truth, we could carefully select the hyperparameters by conducting a bias and standard deviation study, and we obtained the best images in a fixed number of iterations. We demonstrated that the proposed method with well selected hyperparameters improved the image quality using quarter dose data. The quarter dose proposed method was compared with the regular dose FBP, quarter dose FBP, and quarter dose l -based 3-D TV method. We confirmed that the quarter dose proposed image was comparable to the regular dose FBP image and was better than images using other quarter dose methods. The reconstructed test images of the accreditation (ACR) CT phantom and 20 patients data were evaluated by radiologists at the Mayo clinic, and this method was awarded first place in the Low Dose CT Grand Challenge.

CONCLUSION

We proposed the iterative CT reconstruction method using a spatially encoded nonlocal penalty and ordered subsets separable quadratic surrogates with the Nesterov's momentum and diminishing number of subsets. The results demonstrated that the proposed method with fine-tuned hyperparameters can significantly improve the image quality and provide accurate diagnostic features at quarter dose. The performance of the proposed method should be further improved for small lesions, and a more thorough evaluation using additional clinical data is required in the future.

摘要

目的

计算机断层扫描(CT)是用于对有症状和无症状患者进行成像的最常用成像方式之一。然而,由于在 CT 扫描过程中对低辐射剂量的需求较高,由于图像质量和辐射剂量之间的权衡,重建图像可能会受到噪声和伪影的影响。本文的目的是使用常规剂量图像作为基准来提高四分之一剂量图像的质量并选择最佳超参数。

方法

我们首先使用单层重排方法从具有飞焦点的多层原始投影中生成轴向堆叠的二维正弦图,这是一种轴向近似方法,可提供简单的实现和高效的内存使用。为了提高图像质量,提出了一种包含泊松对数似然和空间编码非局部惩罚的代价函数。具体来说,利用对数似然的有序子集可分离二次逼近(OS-SQS)方法,并开发了基于补丁的相似性约束,该约束具有空间变化因子,可在保留特征的同时显著降低噪声。此外,我们应用了 Nesterov 的动量方法进行加速,并采用减少子集的策略来保持噪声一致性。还利用快速非局部权重计算来降低计算成本。

结果

使用由低剂量 CT 挑战赛提供的数据集进行验证,利用常规剂量和四分之一剂量数据进行训练数据集的开发。本文最重要的步骤是仔细调整超参数以提供最佳诊断图像。使用常规剂量滤波反投影(FBP)图像作为基准,可以通过进行偏差和标准差研究来仔细选择超参数,并在固定的迭代次数内获得最佳图像。我们证明,使用四分之一剂量数据,使用精心选择的超参数的提出方法可以提高图像质量。将四分之一剂量提出的方法与常规剂量 FBP、四分之一剂量 FBP 和四分之一剂量 l 基于 3-D TV 的方法进行了比较。我们确认,提出的四分之一剂量图像与常规剂量 FBP 图像相当,并且优于使用其他四分之一剂量方法的图像。在 Mayo 诊所,由放射科医生对认证(ACR)CT 体模和 20 名患者数据的重建测试图像进行了评估,该方法在低剂量 CT 挑战赛中获得第一名。

结论

我们提出了一种使用空间编码非局部惩罚和有序子集可分离二次逼近(带 Nesterov 动量和减少子集数)的迭代 CT 重建方法。结果表明,使用精心调整的超参数的提出方法可以显著提高图像质量,并在四分之一剂量下提供准确的诊断特征。应该进一步提高该方法对小病变的性能,并在未来使用更多临床数据进行更彻底的评估。

相似文献

1
Low-dose CT reconstruction using spatially encoded nonlocal penalty.
Med Phys. 2017 Oct;44(10):e376-e390. doi: 10.1002/mp.12523.
2
Time of flight PET reconstruction using nonuniform update for regional recovery uniformity.
Med Phys. 2019 Feb;46(2):649-664. doi: 10.1002/mp.13321. Epub 2019 Jan 4.
4
Accelerated statistical reconstruction for C-arm cone-beam CT using Nesterov's method.
Med Phys. 2015 May;42(5):2699-708. doi: 10.1118/1.4914378.
7
Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.
IEEE Trans Med Imaging. 2015 Jan;34(1):167-78. doi: 10.1109/TMI.2014.2350962. Epub 2014 Aug 22.
8
Low-dose 4DCT reconstruction via temporal nonlocal means.
Med Phys. 2011 Mar;38(3):1359-65. doi: 10.1118/1.3547724.
9
Computationally efficient deep neural network for computed tomography image reconstruction.
Med Phys. 2019 Nov;46(11):4763-4776. doi: 10.1002/mp.13627. Epub 2019 Sep 21.

引用本文的文献

2
An optimized EBRSA-Bi LSTM model for highly undersampled rapid CT image reconstruction.
Biomed Signal Process Control. 2023 May;83:104637. doi: 10.1016/j.bspc.2023.104637. Epub 2023 Feb 8.
3
Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
Med Phys. 2021 Dec;48(12):7657-7672. doi: 10.1002/mp.15101. Epub 2021 Nov 17.
4
Mutual Information-Based Non-Local Total Variation Denoiser for Low-Dose Cone-Beam Computed Tomography.
Front Oncol. 2021 Oct 21;11:751057. doi: 10.3389/fonc.2021.751057. eCollection 2021.
5
Patient-specific hyperparameter learning for optimization-based CT image reconstruction.
Phys Med Biol. 2021 Sep 20;66(19). doi: 10.1088/1361-6560/ac0f9a.
9
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy.
J Med Imaging (Bellingham). 2019 Oct;6(4):043504. doi: 10.1117/1.JMI.6.4.043504. Epub 2019 Oct 24.

本文引用的文献

1
Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty.
IEEE Trans Med Imaging. 2015 Mar;34(3):748-60. doi: 10.1109/TMI.2014.2380993. Epub 2014 Dec 18.
2
Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.
IEEE Trans Med Imaging. 2015 Jan;34(1):167-78. doi: 10.1109/TMI.2014.2350962. Epub 2014 Aug 22.
3
Nonlocal regularization of inverse problems: a unified variational framework.
IEEE Trans Image Process. 2013 Aug;22(8):3192-203. doi: 10.1109/TIP.2012.2216278. Epub 2012 Sep 20.
4
Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization.
IEEE Trans Med Imaging. 2012 Dec;31(12):2194-204. doi: 10.1109/TMI.2012.2211378. Epub 2012 Aug 2.
5
Fully 3D iterative scatter-corrected OSEM for HRRT PET using a GPU.
Phys Med Biol. 2011 Aug 7;56(15):4991-5009. doi: 10.1088/0031-9155/56/15/021. Epub 2011 Jul 19.
7
Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study.
AJR Am J Roentgenol. 2009 Sep;193(3):764-71. doi: 10.2214/AJR.09.2397.
8
Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization.
Phys Med Biol. 2008 Sep 7;53(17):4777-807. doi: 10.1088/0031-9155/53/17/021. Epub 2008 Aug 13.
9
Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing.
IEEE Trans Image Process. 2008 Jul;17(7):1047-60. doi: 10.1109/TIP.2008.924284.
10
Deterministic edge-preserving regularization in computed imaging.
IEEE Trans Image Process. 1997;6(2):298-311. doi: 10.1109/83.551699.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验