Muller Eilif, Buesing Lars, Schemmel Johannes, Meier Karlheinz
Neural Comput. 2007 Nov;19(11):2958-3010. doi: 10.1162/neco.2007.19.11.2958.
We propose a Markov process model for spike-frequency adapting neural ensembles that synthesizes existing mean-adaptation approaches, population density methods, and inhomogeneous renewal theory, resulting in a unified and tractable framework that goes beyond renewal and mean-adaptation theories by accounting for correlations between subsequent interspike intervals. A method for efficiently generating inhomogeneous realizations of the proposed Markov process is given, numerical methods for solving the population equation are presented, and an expression for the first-order interspike interval correlation is derived. Further, we show that the full five-dimensional master equation for a conductance-based integrate-and-fire neuron with spike-frequency adaptation and a relative refractory mechanism driven by Poisson spike trains can be reduced to a two-dimensional generalization of the proposed Markov process by an adiabatic elimination of fast variables. For static and dynamic stimulation, negative serial interspike interval correlations and transient population responses, respectively, of Monte Carlo simulations of the full five-dimensional system can be accurately described by the proposed two-dimensional Markov process.
我们提出了一种用于脉冲频率适应神经集合的马尔可夫过程模型,该模型综合了现有的均值适应方法、种群密度方法和非齐次更新理论,从而形成了一个统一且易于处理的框架。该框架超越了更新理论和均值适应理论,因为它考虑了后续脉冲间隔之间的相关性。我们给出了一种有效生成所提出马尔可夫过程的非齐次实现的方法,提出了求解种群方程的数值方法,并推导了一阶脉冲间隔相关性的表达式。此外,我们表明,对于具有脉冲频率适应和由泊松脉冲序列驱动的相对不应期机制的基于电导的积分发放神经元,通过绝热消除快速变量,完整的五维主方程可以简化为所提出马尔可夫过程的二维推广。对于静态和动态刺激,完整五维系统的蒙特卡罗模拟中分别出现的负序列脉冲间隔相关性和瞬态种群响应,可以由所提出的二维马尔可夫过程准确描述。