Urdapilleta Eugenio
División de Física Estadística e Interdisciplinaria & Instituto Balseiro, Centro Atómico Bariloche, Avenida E. Bustillo Km 9.500, S.C. de Bariloche (8400), Río Negro, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041904. doi: 10.1103/PhysRevE.84.041904. Epub 2011 Oct 3.
Negative serial correlations in single spike trains are an effective method to reduce the variability of spike counts. One of the factors contributing to the development of negative correlations between successive interspike intervals is the presence of adaptation currents. In this work, based on a hidden Markov model and a proper statistical description of conditional responses, we obtain analytically these correlations in an adequate dynamical neuron model resembling adaptation. We derive the serial correlation coefficients for arbitrary lags, under a small adaptation scenario. In this case, the behavior of correlations is universal and depends on the first-order statistical description of an exponentially driven time-inhomogeneous stochastic process.
单个脉冲序列中的负序列相关性是降低脉冲计数变异性的有效方法。连续脉冲间隔之间负相关性发展的一个促成因素是适应电流的存在。在这项工作中,基于隐马尔可夫模型和对条件响应的适当统计描述,我们在一个类似于适应的适当动态神经元模型中解析地获得了这些相关性。在小适应场景下,我们推导了任意滞后的序列相关系数。在这种情况下,相关性的行为是普遍的,并且取决于指数驱动的时间非齐次随机过程的一阶统计描述。