Kovacic Peter, Pozos Robert S
Department of Chemistry, San Diego State University, San Diego, California 92182, USA.
J Recept Signal Transduct Res. 2007;27(4):261-94. doi: 10.1080/10799890701509133.
Bioelectronome refers to the host of electron transfer (ET) reactions that occur in living systems. This review presents an integrated approach to receptor chemistry based on electron transfer, radicals, electrochemistry, cell signaling, and end result. First, receptor activity is addressed from the unifying standpoint of redox transformations in which various receptors are discussed. After a listing of receptor-binding modes, receptor chemistry is treated with focus on generation of reactive oxygen species (ROS), activation by ROS, and subsequent cell signaling involving ROS. A general electrostatic mechanism is proposed for receptor-ligand action with supporting evidence. Cell-signaling processes appear to entail electron transfer, ROS, redox chains, and relays. The widespread involvement of phosphate from phosphorylation may be rationalized electrostatically by analogy with DNA phosphate. Extensive evidence supports important participation of ET functionalities in the mechanism of drugs and toxins. The integrated approach is applied to the main ET classes, namely, quinones, metal complexes, iminium species, and aromatic nitro compounds.
生物电子组指的是发生在生命系统中的电子转移(ET)反应的集合。本综述提出了一种基于电子转移、自由基、电化学、细胞信号传导及最终结果的受体化学综合方法。首先,从氧化还原转化的统一视角探讨受体活性,其中讨论了各种受体。在列出受体结合模式后,重点围绕活性氧(ROS)的产生、ROS的激活以及随后涉及ROS的细胞信号传导来论述受体化学。提出了一种受体-配体作用的一般静电机制并给出了支持证据。细胞信号传导过程似乎涉及电子转移、ROS、氧化还原链和中继。磷酸化产生的磷酸盐的广泛参与可通过与DNA磷酸盐类比从静电角度加以解释。大量证据支持电子转移功能在药物和毒素作用机制中的重要参与。这种综合方法应用于主要的电子转移类别,即醌类、金属配合物、亚胺离子物种和芳香族硝基化合物。