Szabó Zoltan, Grenthe Ingmar
Department of Chemistry, Inorganic Chemistry, Royal Institute of Technology (KTH), Teknikringen 36, Stockholm, Sweden.
Inorg Chem. 2007 Oct 29;46(22):9372-8. doi: 10.1021/ic700817y. Epub 2007 Sep 22.
The stoichiometric mechanism, rate constant, and activation parameters for the exchange of the "yl"-oxygen atoms in the dioxo uranium(VI) ion with solvent water have been studied using 17O NMR spectroscopy. The experimental rate equation, (-->)v= k(2obs)[UO2(2+)]tot2/[H+]2, is consistent with a mechanism where the first step is a rapid equilibrium 2U(17)O2(2+) + 2H2O<==>(U(17)O2)2(OH)2(2+) + 2H+, followed by the rate-determining step (U(17)O2)2(OH)2(2+) + H2O<==>(UO2)2*(OH)2(2+) + H2(17)O, where the back reaction can be neglected because the (17)O enrichment in the water is much lower than in the uranyl ion. This mechanism results in the following rate equation (-->)v= d[(UO2)2(OH)2(2+)]/dt = k(2,2)[(UO2)2(OH)2(2+)] = k(2,2*)beta(2,2)[UO2(2+)]2/[H + ]2; with k(2,2) = (1.88 +/- 0.22) x 10(4) h(-1), corresponding to a half-life of 0.13 s, and the activation parameters DeltaH++ = 119 +/- 13 kJ mol-1 and DeltaS++ = 81 +/- 44 J mol(-1) K(-1). *Beta(2,)2 is the equilibrium constant for the reaction 2UO2(2+) + 2H2O<==>(UO2)2(OH)2(2+) + 2H+. The experimental data show that there is no measurable exchange of the "yl"-oxygen in UO2(2+), UO2(OH)+, and UO2(OH)4(2-)/ UO2(OH)5(3-), indicating that "yl"-exchange only takes place in polynuclear hydroxide complexes. There is no "yl"-exchange in the ternary complex (UO2)2(mu-OH)2(F)2(oxalate)2(4-), indicating that it is also necessary to have coordinated water in the first coordination sphere of the binuclear complex, for exchange to take place. The very large increase in lability of the "yl"-bonds in (UO2)2(OH)2(2+) as compared to those of the other species is presumably a result of proton transfer from coordinated water to the "yl"-oxygen, followed by a rapid exchange of the resulting OH group with the water solvent. "Yl"-exchange through photochemical mediation is well-known for the uranyl(VI) aquo ion. We noted that there was no photochemical exchange in UO2(CO3)3(4-), whereas there was a slow exchange or photo reduction in the UO2(OH)4(2-) / UO2(OH)5(3-) system that eventually led to the appearance of a black precipitate, presumably UO2.
利用¹⁷O核磁共振光谱研究了二氧铀(VI)离子中“酰基”氧原子与溶剂水交换的化学计量机制、速率常数和活化参数。实验速率方程(-->)v = k(2obs)[UO₂²⁺]₂ₒₜ₂/[H⁺]²,与如下机制一致:第一步是快速平衡2U(¹⁷)O₂²⁺ + 2H₂O⇌(U(¹⁷)O₂)₂(OH)₂²⁺ + 2H⁺,随后是速率决定步骤(U(¹⁷)O₂)₂(OH)₂²⁺ + H₂O⇌(UO₂)₂*(OH)₂²⁺ + H₂(¹⁷)O,由于水中的¹⁷O富集比铀酰离子中的低得多,所以逆反应可忽略不计。该机制得出如下速率方程(-->)v = d[(UO₂)₂(OH)₂²⁺]/dt = k(2,2)[(UO₂)₂(OH)₂²⁺] = k(2,2*)β(2,2)[UO₂²⁺]²/[H⁺]²;其中k(2,2) = (1.88 ± 0.22)×10⁴ h⁻¹,对应半衰期为0.13 s,活化参数ΔH⁺⁺ = 119 ± 13 kJ mol⁻¹,ΔS⁺⁺ = 81 ± 44 J mol⁻¹ K⁻¹。*β(2,2)是反应2UO₂²⁺ + 2H₂O⇌(UO₂)₂(OH)₂²⁺ + 2H⁺的平衡常数。实验数据表明,UO₂²⁺、UO₂(OH)⁺和UO₂(OH)₄²⁻/UO₂(OH)₅³⁻中“酰基”氧没有可测量的交换,这表明“酰基”交换仅在多核氢氧化物配合物中发生。三元配合物(UO₂)₂(μ-OH)₂(F)₂(草酸盐)₂⁴⁻中没有“酰基”交换,这表明双核配合物的第一配位层中也必须有配位水才能发生交换。与其他物种相比,(UO₂)₂(OH)₂²⁺中“酰基”键的活性大幅增加,可能是由于配位水的质子转移到“酰基”氧上,随后生成的OH基团与水溶剂快速交换。铀酰(VI)水合离子通过光化学介导的“酰基”交换是众所周知的。我们注意到UO₂(CO₃)₃⁴⁻中没有光化学交换,而UO₂(OH)₄²⁻/UO₂(OH)₅³⁻体系中有缓慢的交换或光还原,最终导致出现黑色沉淀,可能是UO₂。