Suppr超能文献

重铀酸铵热分解和还原过程中的氧动力学同位素效应

Oxygen Kinetic Isotope Effects in the Thermal Decomposition and Reduction of Ammonium Diuranate.

作者信息

Klosterman Michael R, Oerter Erik J, Deinhart Amanda L, Chakraborty Suvankar, Singleton Michael J, McDonald Luther W

机构信息

Department of Civil & Environmental Engineering, Nuclear Engineering Program, University of Utah, 201 President's Circle, Salt Lake City, Utah 84112, United States.

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.

出版信息

ACS Omega. 2021 Nov 3;6(45):30856-30864. doi: 10.1021/acsomega.1c05388. eCollection 2021 Nov 16.

Abstract

Oxygen stable isotopes in uranium oxides processed through the nuclear fuel cycle may have the potential to provide information about a material's origin and processing history. However, a more thorough understanding of the fractionating processes governing the formation of signatures in real-world samples is still needed. In this study, laboratory synthesis of uranium oxides modeled after industrial nuclear fuel fabrication was performed to follow the isotope fractionation during thermal decomposition and reduction of ammonium diuranate (ADU). Synthesis of ADU occurred using a gaseous NH route, followed by thermal decomposition in a dry nitrogen atmosphere at 400, 600, and 800 °C. The kinetic impact of heating ramp rates on isotope effects was explored by ramping to each decomposition temperature at 2, 20, and 200 °C min. In addition, ADU was reduced using direct (ramped to 600 °C in a hydrogen atmosphere) and indirect (thermally decomposed to UO at 600 °C, then exposed to a hydrogen atmosphere) routes. The bulk oxygen isotope composition of ADU (δO = -16 ± 1‰) was very closely related to precipitation water (δO = -15.6‰). The solid products of thermal decomposition using ramp rates of 2 and 20 °C min had statistically indistinguishable oxygen isotope compositions at each decomposition temperature, with increasing δO values in the transition from ADU to UO at 400 °C (δO - δO = 12.3‰) and the transition from UO to UO at 600 °C (δO - δO = 2.8‰). An enrichment of O attributable to water volatilization was observed in the low temperature (400 °C) product of thermal decomposition using a 200 °C min ramp rate (δO - δO = 9.2‰). Above 400 °C, no additional fractionation was observed as UO decomposed to UO with the rapid heating rate. Indirect reduction of ADU produced UO with a δO value 19.1‰ greater than the precipitate and 4.0‰ greater than the intermediate UO. Direct reduction of ADU at 600 °C in a hydrogen atmosphere resulted in the production of UO with a δO value 17.1‰ greater than the precipitate. Except when a 200 °C min ramp rate is employed, the results of both thermal decomposition and reduction show a consistent preferential enrichment of O as oxygen is removed from the original precipitate. Hence, the calcination and reduction reactions leading to the production of UO will yield unique oxygen isotope fractionations based on process parameters including heating rate and decomposition temperature.

摘要

经过核燃料循环处理的铀氧化物中的氧稳定同位素可能有潜力提供有关材料来源和加工历史的信息。然而,仍需要更深入地了解在实际样品中控制特征形成的分馏过程。在本研究中,进行了以工业核燃料制造为模型的铀氧化物实验室合成,以追踪重铀酸铵(ADU)热分解和还原过程中的同位素分馏。ADU的合成采用气态NH路线,随后在400、600和800°C的干燥氮气气氛中进行热分解。通过以2、20和200°C/min的升温速率升至每个分解温度,探索了升温速率对同位素效应的动力学影响。此外,ADU采用直接(在氢气气氛中升温至600°C)和间接(在600°C热分解为UO,然后暴露于氢气气氛)路线进行还原。ADU的整体氧同位素组成(δO = -16 ± 1‰)与降水水(δO = -15.6‰)密切相关。使用2和20°C/min升温速率进行热分解的固体产物在每个分解温度下的氧同位素组成在统计上无法区分,在400°C从ADU转变为UO(δO - δO = 12.3‰)以及在600°C从UO转变为UO(δO - δO = 2.8‰)时,δO值增加。在使用200°C/min升温速率进行热分解的低温(400°C)产物中,观察到由于水挥发导致的O富集(δO - δO = 9.2‰)。在400°C以上,随着UO以快速加热速率分解为UO,未观察到额外的分馏。ADU的间接还原产生的UO的δO值比沉淀物大19.1‰,比中间产物UO大4.0‰。在氢气气氛中于600°C对ADU进行直接还原,导致产生的UO的δO值比沉淀物大17.1‰。除了采用200°C/min升温速率时,热分解和还原的结果均表明,随着氧从原始沉淀物中去除,O存在一致的优先富集。因此,导致UO产生的煅烧和还原反应将根据包括加热速率和分解温度在内的工艺参数产生独特的氧同位素分馏。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验