Huang Renqi, He Shaoqing, Chen Zhenglan, Dillon Glenn H, Leidenheimer Nancy J
Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA.
Biochemistry. 2007 Oct 16;46(41):11484-93. doi: 10.1021/bi701093j. Epub 2007 Sep 22.
Little is known regarding the mechanism(s) by which glycine receptors are endocytosed. Here we examined the endocytosis of homomeric alpha1 glycine receptors expressed in HEK 293 cells using immunofluorescence/confocal microscopy and whole-cell patch-clamp recordings. Our studies demonstrate that constitutive endocytosis of glycine receptors is blocked by the dominant negative dynamin construct K44A and that intracellular dialysis with peptide P4, a dynamin/amphiphysin-disrupting peptide, increased whole-cell glycine-gated chloride currents. To examine whether receptor endocytosis could be regulated by PKC, experiments with the PKC activator PMA (phorbol 12-myristate 13-acetate) were performed. PMA, but not its inactive analogue PMM (phorbol 12-monomyristate), stimulated receptor endocytosis and inhibited glycine-gated chloride currents. Similar to constitutive endocytosis, PKC-stimulated endocytosis was blocked by dynamin K44A. Mutation of a putative AP2 adaptin dileucine motif (L314A, L315A) present in the receptor cytoplasmic loop blocked PMA-stimulated receptor endocytosis and also prevented PMA inhibition of glycine receptor currents. In patch-clamp experiments, intracellular dialysis of a 12-amino acid peptide corresponding to the region of the receptor containing the dileucine motif prevented PKC modulation of wild-type glycine receptors. Unlike PKC modulation of the receptor, constitutive endocytosis was not affected by mutation of this dileucine motif. These results demonstrate that PKC activation stimulates glycine receptor endocytosis, that both constitutive endocytosis and PKC-stimulated endocytosis are dynamin-dependent, and that PKC-stimulated endocytosis, but not constitutive endocytosis, occurs via the dileucine motif (L314A, L315A) within the cytoplasmic loop of the receptor.
关于甘氨酸受体被内吞的机制,目前所知甚少。在这里,我们使用免疫荧光/共聚焦显微镜和全细胞膜片钳记录技术,研究了在HEK 293细胞中表达的同聚体α1甘氨酸受体的内吞作用。我们的研究表明,甘氨酸受体的组成型内吞作用被显性负性发动蛋白构建体K44A所阻断,并且用肽P4(一种破坏发动蛋白/发动蛋白结合蛋白的肽)进行细胞内透析可增加全细胞甘氨酸门控氯离子电流。为了研究受体内吞作用是否可被蛋白激酶C(PKC)调节,我们进行了用PKC激活剂佛波醇12 -肉豆蔻酸酯13 -乙酸酯(PMA)的实验。PMA而非其无活性类似物佛波醇12 -单肉豆蔻酸酯(PMM)刺激了受体内吞作用并抑制了甘氨酸门控氯离子电流。与组成型内吞作用类似,PKC刺激的内吞作用被发动蛋白K44A所阻断。受体胞质环中存在的假定AP2衔接蛋白双亮氨酸基序(L314A、L315A)的突变阻断了PMA刺激的受体内吞作用,并且也阻止了PMA对甘氨酸受体电流的抑制。在膜片钳实验中,与受体含双亮氨酸基序区域对应的12个氨基酸肽的细胞内透析阻止了PKC对野生型甘氨酸受体的调节。与PKC对受体的调节不同,组成型内吞作用不受该双亮氨酸基序突变的影响。这些结果表明,PKC激活刺激了甘氨酸受体内吞作用,组成型内吞作用和PKC刺激的内吞作用均依赖于发动蛋白,并且PKC刺激的内吞作用而非组成型内吞作用通过受体胞质环内的双亮氨酸基序(L314A、L315A)发生。