Suppr超能文献

人工晶状体非球面度的定制优化。

Custom optimization of intraocular lens asphericity.

作者信息

Wang Li, Koch Douglas D

机构信息

Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

J Cataract Refract Surg. 2007 Oct;33(10):1713-20. doi: 10.1016/j.jcrs.2007.07.010.

Abstract

PURPOSE

To investigate the optimal amount of spherical aberration (SA) in an intraocular lens (IOL) to maximize optical quality.

SETTING

Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA.

METHODS

In 154 eyes of 94 patients aged 40 to 80 years, implantation of aspherical IOLs with different amounts of SA to produce residual ocular SA from -0.50 to +0.50 microm was simulated. Using the VOL-CT program (Sarver and Associates), corneal wavefront aberrations up to 6th order were computed from corneal topographic elevation data (Humphrey Atlas, Carl Zeiss, Inc.). Using the Zernike Tool program (Advanced Medical Optics, Inc.), the polychromatic point-spread function with Stiles-Crawford effect was calculated for the residual ocular higher-order aberrations (HOAs) (3rd to 6th order) for 6.0 mm and 4.0 mm pupils with defocus of 0.00 diopter (D), -0.50 D, and +0.50 D. Five parameters were used to quantify optical image quality, and the optimal ocular SA and IOL SA at which the maximal image quality was achieved in each eye were determined. Stepwise multiple regression analysis was performed to assess the predictors for optimal IOL SA for each eye.

RESULTS

The optimal ocular SA and IOL SA for a 6.0 mm pupil varied widely between eyes. With defocus of 0.00 D, -0.50 D, and +0.50 D, most eyes achieved the best image quality at an ocular SA of -0.10 to 0.00 microm, +0.15 to +0.30 microm, and -0.40 to -0.20 microm, respectively. The IOL SA values that provided optimal visual quality in at least 10% of eyes were -0.45 to -0.20 microm with zero defocus, -0.15 to +0.10 microm with myopia of -0.50 D, and -0.75 microm to -0.45 microm with hyperopia of +0.50 D. The amount of optimal IOL SA could be predicted based on other HOAs of the cornea with multiple correlation coefficients up to 0.952. Among the Zernike terms, 4th-order SA, Z(4,0), made the greatest contribution to the optimal IOL SA, followed by the 6th-order SA, Z(6,0).

CONCLUSIONS

The amount of IOL SA producing the best image quality varied widely between patients and could be predicted based on corneal HOAs. Selection of an aspherical IOL should be customized based on the full spectrum of corneal HOAs, not on 4th-order SA alone.

摘要

目的

研究人工晶状体(IOL)中球差(SA)的最佳量,以实现光学质量最大化。

设置

美国得克萨斯州休斯顿贝勒医学院卡伦眼科研究所。

方法

在94例年龄40至80岁患者的154只眼中,模拟植入具有不同球差量的非球面人工晶状体,以产生-0.50至+0.50微米的残余眼球差。使用VOL-CT程序(Sarver及合伙人公司),根据角膜地形图高度数据(卡尔蔡司公司汉弗莱地图集)计算高达6阶的角膜波前像差。使用泽尼克工具程序(先进医学光学公司),针对6.0毫米和4.0毫米瞳孔、屈光度为0.00屈光度(D)、-0.50 D和+0.50 D的情况,计算具有斯泰尔斯-克劳福德效应的多色点扩散函数,用于残余眼高阶像差(HOAs)(3至6阶)。使用五个参数量化光学图像质量,并确定每只眼中实现最大图像质量时的最佳眼球差和人工晶状体球差。进行逐步多元回归分析,以评估每只眼最佳人工晶状体球差的预测因素。

结果

6.0毫米瞳孔的最佳眼球差和人工晶状体球差在不同眼睛之间差异很大。在屈光度为0.00 D、-0.50 D和+0.50 D时,大多数眼睛分别在眼球差为-0.10至0.00微米、+0.15至+0.30微米和-0.40至-0.20微米时获得最佳图像质量。在至少10%的眼睛中提供最佳视觉质量的人工晶状体球差值,在零屈光度时为-0.45至-0.20微米,近视-0.50 D时为-0.15至+0.10微米,远视+0.50 D时为-0.75微米至-0.45微米。可以根据角膜的其他高阶像差预测最佳人工晶状体球差量,多重相关系数高达0.952。在泽尼克项中,4阶球差Z(4,0)对最佳人工晶状体球差的贡献最大,其次是6阶球差Z(6,0)。

结论

产生最佳图像质量的人工晶状体球差量在患者之间差异很大,并且可以根据角膜高阶像差进行预测。非球面人工晶状体的选择应根据角膜高阶像差的全谱进行定制,而不仅仅基于4阶球差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验