Dague Etienne, Alsteens David, Latgé Jean-Paul, Dufrêne Yves F
Unité de Chimie des Interfaces, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
Biophys J. 2008 Jan 15;94(2):656-60. doi: 10.1529/biophysj.107.116491. Epub 2007 Sep 21.
We used real-time atomic force microscopy with a temperature-controlled stage (37 degrees C) to probe the structural and physicochemical dynamics of single Aspergillus fumigatus conidia during germination. Nanoscale topographic images of dormant spores revealed the presence of a layer of rodlets made of hydrophobins, in agreement with earlier electron microscopy observations. Within the 3-h germination period, progressive disruption of the rodlet layer was observed, revealing hydrophilic inner cell wall structures. Using adhesion force mapping with hydrophobic tips, these ultrastructural changes were shown to correlate with major differences in cell surface hydrophobicity. That is, the rodlet surface was uniformly hydrophobic due to the presence of hydrophobins, whereas the cell wall material appearing upon germination was purely hydrophilic. This study illustrates the potential of real-time atomic force microscopy imaging and force spectroscopy for tracking cell-surface dynamics.
我们使用配备温度控制载物台(37摄氏度)的实时原子力显微镜,来探究烟曲霉分生孢子萌发过程中的结构和物理化学动力学。休眠孢子的纳米级形貌图像显示存在一层由疏水蛋白构成的小杆,这与早期电子显微镜观察结果一致。在3小时的萌发期内,观察到小杆层逐渐破坏,露出亲水性的内部细胞壁结构。通过使用疏水探针进行粘附力映射,这些超微结构变化被证明与细胞表面疏水性的主要差异相关。也就是说,由于疏水蛋白的存在,小杆表面均匀疏水,而萌发时出现的细胞壁物质则完全亲水。本研究说明了实时原子力显微镜成像和力谱在追踪细胞表面动力学方面的潜力。