Suppr超能文献

使用Rosetta@home进行广泛的全原子精修对第7届蛋白质结构预测关键评估(CASP7)目标进行结构预测。

Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home.

作者信息

Das Rhiju, Qian Bin, Raman Srivatsan, Vernon Robert, Thompson James, Bradley Philip, Khare Sagar, Tyka Michael D, Bhat Divya, Chivian Dylan, Kim David E, Sheffler William H, Malmström Lars, Wollacott Andrew M, Wang Chu, Andre Ingemar, Baker David

机构信息

Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.

出版信息

Proteins. 2007;69 Suppl 8:118-28. doi: 10.1002/prot.21636.

Abstract

We describe predictions made using the Rosetta structure prediction methodology for both template-based modeling and free modeling categories in the Seventh Critical Assessment of Techniques for Protein Structure Prediction. For the first time, aggressive sampling and all-atom refinement could be carried out for the majority of targets, an advance enabled by the Rosetta@home distributed computing network. Template-based modeling predictions using an iterative refinement algorithm improved over the best existing templates for the majority of proteins with less than 200 residues. Free modeling methods gave near-atomic accuracy predictions for several targets under 100 residues from all secondary structure classes. These results indicate that refinement with an all-atom energy function, although computationally expensive, is a powerful method for obtaining accurate structure predictions.

摘要

我们描述了在蛋白质结构预测技术第七次关键评估中,使用Rosetta结构预测方法对基于模板建模和自由建模类别所做的预测。首次能够对大多数目标进行积极采样和全原子精修,这一进展得益于Rosetta@home分布式计算网络。对于大多数少于200个残基的蛋白质,使用迭代精修算法的基于模板建模预测比现有的最佳模板有所改进。自由建模方法对来自所有二级结构类别的几个少于100个残基的目标给出了接近原子精度的预测。这些结果表明,尽管全原子能量函数精修在计算上代价高昂,但它是获得准确结构预测的一种强大方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验