Suppr超能文献

冬眠的侧纹岩松鼠肝脏中蛋白质的泛素化作用

Ubiquitylation of proteins in livers of hibernating golden-mantled ground squirrels, Spermophilus lateralis.

作者信息

Velickovska Vanja, van Breukelen Frank

机构信息

School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA.

出版信息

Cryobiology. 2007 Dec;55(3):230-5. doi: 10.1016/j.cryobiol.2007.08.003. Epub 2007 Aug 24.

Abstract

Rodent hibernators experience low core body temperature (as low as -2 degrees C) and reduced metabolic rates during hibernation. Concordant with energetic constraints, protein synthesis is negligible during torpor. To maintain pools of key regulatory proteins, proteolysis must be depressed as well. Ubiquitin-dependent proteolysis consists of two major steps: (1) ubiquitylation or tagging of a protein substrate by ubiquitin and (2) the protein substrate's subsequent degradation by the 26S proteasome. Earlier, we demonstrated that the low temperatures typical of torpor virtually arrest proteolytic processing. Here, we demonstrate that in vitro ubiquitylation still continues at greater than 30% of maximal rates at temperatures as low as 0 degrees C. Continued ubiquitylation in the presence of severely depressed proteolysis may explain the previously observed 2- to 3-fold increase of ubiquitin conjugates during torpor. We determined if there is a qualitative change in the type of ubiquitylation e.g., monoubiquitylation vs polyubiquitylation that occurs during torpor. We found no bias for monoubiquitylation in any state of the torpor cycle. We further determined that substrate limitation of free ubiquitin is not limiting ubiquitylation during torpor. We conclude that while the cold temperatures of torpor may limit proteolysis in accordance with metabolic demands, continued ubiquitylation may result in increased ubiquitin conjugate concentrations that must be processed upon arousal.

摘要

啮齿动物冬眠者在冬眠期间会经历低体温(低至-2摄氏度)和代谢率降低的情况。与能量限制相一致,在蛰伏期间蛋白质合成可忽略不计。为了维持关键调节蛋白的储备,蛋白水解也必须受到抑制。泛素依赖性蛋白水解包括两个主要步骤:(1)泛素对蛋白质底物进行泛素化或标记,以及(2)蛋白质底物随后被26S蛋白酶体降解。此前,我们证明了蛰伏期间典型的低温实际上会阻止蛋白水解过程。在此,我们证明在体外,在低至0摄氏度的温度下,泛素化仍以大于最大速率30%的速度继续进行。在蛋白水解严重受抑的情况下泛素化仍持续进行,这可能解释了之前观察到的蛰伏期间泛素缀合物增加2至3倍的现象。我们确定在蛰伏期间发生的泛素化类型是否存在质的变化,例如单泛素化与多泛素化。我们发现在蛰伏周期的任何状态下都不存在单泛素化偏好。我们进一步确定游离泛素的底物限制在蛰伏期间并不限制泛素化。我们得出结论,虽然蛰伏时的低温可能根据代谢需求限制蛋白水解,但持续的泛素化可能导致泛素缀合物浓度增加,而这些缀合物在苏醒时必须得到处理。

相似文献

1
Ubiquitylation of proteins in livers of hibernating golden-mantled ground squirrels, Spermophilus lateralis.
Cryobiology. 2007 Dec;55(3):230-5. doi: 10.1016/j.cryobiol.2007.08.003. Epub 2007 Aug 24.
2
Ubiquitin conjugate dynamics in the gut and liver of hibernating ground squirrels.
J Comp Physiol B. 2002 Apr;172(3):269-73. doi: 10.1007/s00360-002-0252-5. Epub 2002 Feb 20.
3
Proteolysis is depressed during torpor in hibernators at the level of the 20S core protease.
J Comp Physiol B. 2005 Jul;175(5):329-35. doi: 10.1007/s00360-005-0489-x. Epub 2005 May 24.
4
Torpor Does Not Influence Spatial Memory in Hibernating Golden-Mantled Ground Squirrels ().
Physiol Biochem Zool. 2022 Sep-Oct;95(5):390-399. doi: 10.1086/721185.
6
mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii).
Mol Cell Biol. 2000 Sep;20(17):6374-9. doi: 10.1128/MCB.20.17.6374-6379.2000.
7
Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis.
Am J Physiol Regul Integr Comp Physiol. 2011 Aug;301(2):R370-7. doi: 10.1152/ajpregu.00748.2010. Epub 2011 May 25.
8
Reversible depression of transcription during hibernation.
J Comp Physiol B. 2002 Jul;172(5):355-61. doi: 10.1007/s00360-002-0256-1. Epub 2002 May 23.
10
Thermogenic capacity at subzero temperatures: how low can a hibernator go?
Physiol Biochem Zool. 2015 Jan-Feb;88(1):81-9. doi: 10.1086/679591. Epub 2014 Dec 10.

引用本文的文献

2
Protein Modifications with Ubiquitin as Response to Cerebral Ischemia-Reperfusion Injury.
Transl Stroke Res. 2018 Apr;9(2):157-173. doi: 10.1007/s12975-017-0567-x. Epub 2017 Aug 25.
3
Applying systems-level approaches to elucidate regulatory function during mammalian hibernation.
Temperature (Austin). 2016 May 4;3(4):524-526. doi: 10.1080/23328940.2016.1182243. eCollection 2016.
7
Activity, abundance and expression of Ca²⁺-activated proteases in skeletal muscle of the aestivating frog, Cyclorana alboguttata.
J Comp Physiol B. 2015 Feb;185(2):243-55. doi: 10.1007/s00360-014-0880-6. Epub 2014 Dec 12.
8
Prioritization of skeletal muscle growth for emergence from hibernation.
J Exp Biol. 2015 Jan 15;218(Pt 2):276-84. doi: 10.1242/jeb.109512. Epub 2014 Dec 1.
9
10
Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion.
Stroke. 2012 Aug;43(8):2229-35. doi: 10.1161/STROKEAHA.112.650416. Epub 2012 Jun 14.

本文引用的文献

1
DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A.
Genes Dev. 2006 May 15;20(10):1343-52. doi: 10.1101/gad.373706.
2
The nuclear ubiquitin-proteasome system.
J Cell Sci. 2006 May 15;119(Pt 10):1977-84. doi: 10.1242/jcs.03008.
3
Regulation of DNA repair by ubiquitylation.
Nat Rev Mol Cell Biol. 2006 May;7(5):323-34. doi: 10.1038/nrm1908.
4
Controlled synthesis of polyubiquitin chains.
Methods Enzymol. 2005;399:21-36. doi: 10.1016/S0076-6879(05)99002-2.
5
Chemical and genetic strategies for manipulating polyubiquitin chain structure.
Methods Enzymol. 2005;399:3-20. doi: 10.1016/S0076-6879(05)99001-0.
6
Proteolysis is depressed during torpor in hibernators at the level of the 20S core protease.
J Comp Physiol B. 2005 Jul;175(5):329-35. doi: 10.1007/s00360-005-0489-x. Epub 2005 May 24.
7
Mechanism and function of deubiquitinating enzymes.
Biochim Biophys Acta. 2004 Nov 29;1695(1-3):189-207. doi: 10.1016/j.bbamcr.2004.10.003.
8
Role of protein methylation in regulation of transcription.
Endocr Rev. 2005 Apr;26(2):147-70. doi: 10.1210/er.2004-0008. Epub 2004 Oct 12.
9
Proteasomes and their kin: proteases in the machine age.
Nat Rev Mol Cell Biol. 2004 Mar;5(3):177-87. doi: 10.1038/nrm1336.
10
Back to the future with ubiquitin.
Cell. 2004 Jan 23;116(2):181-90. doi: 10.1016/s0092-8674(03)01074-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验