Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
J Comp Physiol B. 2014 Feb;184(2):235-47. doi: 10.1007/s00360-013-0791-y. Epub 2013 Dec 14.
Embryos of the annual killifish Austrofundulus limnaeus acquire extreme tolerance to anoxia during embryonic development. These embryos can survive environmental and cellular conditions that would likely result in death in the majority of vertebrate cells, despite experiencing a massive loss of ATP. It is highly likely that the initial response to anoxia must quickly alter cellular physiology to reprogram cell signaling and metabolic pathways to support anaerobiosis. Covalent protein modifications are a mechanism that can quickly act to effect large-scale changes in protein structure and function and have been suggested by others to play a key role in mammalian ischemia tolerance. Using Western blot analysis, we explored patterns of protein ubiquitylation and SUMOylation in embryos of A. limnaeus exposed to anoxia and anoxic preconditioning. Surprisingly, we report stage-specific protein ubiquitylation patterns that suggest different mechanisms for altering protein turnover in dormant and actively developing embryos that both survive long-term anoxia. Anoxic preconditioning does not appear to alter levels of ubiquitin conjugates in a unique manner. Global SUMOylation of proteins does not change in response to anoxia, but there are stage-specific changes in SUMOylation of specific protein bands. Contrary to other systems, global changes in protein SUMOylation may not be required to support long-term tolerance to anoxia in embryos of A. limnaeus. These data lead us to conclude that embryos of A. limnaeus respond to anoxia in a unique manner compared to other vertebrate models of anoxia tolerance and may provide novel mechanisms for engineering vertebrate tissues to survive long-term anoxia.
一年生脂鲤 Austrofundulus limnaeus 的胚胎在胚胎发育过程中获得对缺氧的极端耐受。这些胚胎可以在环境和细胞条件下存活,而这些条件在大多数脊椎动物细胞中可能导致死亡,尽管经历了大量的 ATP 损失。很可能缺氧的初始反应必须迅速改变细胞生理学,以重新编程细胞信号和代谢途径以支持无氧代谢。共价蛋白质修饰是一种可以快速作用于蛋白质结构和功能的大规模变化的机制,并且已经被其他人提出在哺乳动物耐缺血性中发挥关键作用。通过 Western blot 分析,我们探讨了在缺氧和缺氧预处理的 A. limnaeus 胚胎中蛋白质泛素化和 SUMO 化的模式。令人惊讶的是,我们报告了阶段特异性的蛋白质泛素化模式,表明在休眠和活跃发育的胚胎中改变蛋白质周转率的不同机制,这两种胚胎都能长期耐受缺氧。缺氧预处理似乎不会以独特的方式改变泛素缀合物的水平。蛋白质的全局 SUMO 化在缺氧时不会改变,但在特定蛋白带的 SUMO 化方面存在阶段特异性变化。与其他系统相反,蛋白质 SUMO 化的全局变化可能不是支持 A. limnaeus 胚胎长期耐受缺氧所必需的。这些数据使我们得出结论,与其他缺氧耐受的脊椎动物模型相比,A. limnaeus 的胚胎以独特的方式对缺氧做出反应,并且可能为工程脊椎动物组织以耐受长期缺氧提供新的机制。