Rosetti Carla M, Maggio Bruno
Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
Biophys J. 2007 Dec 15;93(12):4254-67. doi: 10.1529/biophysj.107.112441. Epub 2007 Sep 28.
Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.
由髓磷脂制备的单层膜在铺展于气-水界面时保留了天然膜的所有组成复杂性。它们呈现出一种复杂的压力依赖性表面图案,在压缩时,从两个液相共存转变为嵌入液相中的粘性分形相。我们剖析了主要髓磷脂蛋白成分,即髓磷脂碱性蛋白(MBP)和福尔克-李斯蛋白脂蛋白(PLP)作为决定界面结构动力学的关键因素所起的作用。通过分析单一蛋白质与髓磷脂脂质的混合物,我们发现MBP和PLP具有不同的表面压力依赖性行为。MBP在低压下稳定两个液相的分离,并在压缩时从膜中被排除,保留在界面附近。相反,当PLP包含在无蛋白髓磷脂脂质的单层膜中时,它在所有表面压力下都组织成一种分形样图案,但它仍混合在MBP诱导的液相中。由此产生的表面形貌和动力学受接近平衡和非平衡效应的共同调节。PLP似乎作为整个成分的表面骨架,而MBP将结构形成与表面压力依赖性挤出和吸附过程联系起来。