Suppr超能文献

锥虫激活内吞作用以适应哺乳动物宿主。

Activation of endocytosis as an adaptation to the mammalian host by trypanosomes.

作者信息

Natesan Senthil Kumar A, Peacock Lori, Matthews Keith, Gibson Wendy, Field Mark C

机构信息

The Molteno Building, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, United Kingdom.

出版信息

Eukaryot Cell. 2007 Nov;6(11):2029-37. doi: 10.1128/EC.00213-07. Epub 2007 Sep 28.

Abstract

Immune evasion in African trypanosomes is principally mediated by antigenic variation, but rapid internalization of surface-bound immune factors may contribute to survival. Endocytosis is upregulated approximately 10-fold in bloodstream compared to procyclic forms, and surface coat remodeling accompanies transition between these life stages. Here we examined expression of endocytosis markers in tsetse fly stages in vivo and monitored modulation during transition from bloodstream to procyclic forms in vitro. Among bloodstream stages nonproliferative stumpy forms have endocytic activity similar to that seen with rapidly dividing slender forms, while differentiation of stumpy forms to procyclic forms is accompanied by rapid down-regulation of Rab11 and clathrin, suggesting that modulation of endocytic and recycling systems accompanies this differentiation event. Significantly, rapid down-regulation of endocytic markers occurs upon entering the insect midgut and expression of Rab11 and clathrin remains low throughout subsequent development, which suggests that high endocytic activity is not required for remodeling the parasite surface or for survival within the fly. However, salivary gland metacyclic forms dramatically increase expression of clathrin and Rab11, indicating that emergence of mammalian infective forms is coupled to reacquisition of a high-activity endocytic-recycling system. These data suggest that high-level endocytosis in Trypanosoma brucei is an adaptation required for viability in the mammalian host.

摘要

非洲锥虫的免疫逃避主要由抗原变异介导,但表面结合的免疫因子的快速内化可能有助于其存活。与前循环型相比,血流型锥虫的内吞作用上调了约10倍,并且在这些生命阶段之间的转变伴随着表面被膜重塑。在这里,我们检测了采采蝇体内各阶段内吞作用标志物的表达,并监测了体外从血流型向前循环型转变过程中的调节情况。在血流型阶段中,非增殖性的粗短型锥虫的内吞活性与快速分裂的细长型相似,而粗短型向前循环型的分化伴随着Rab11和网格蛋白的快速下调,这表明内吞和再循环系统的调节伴随着这一分化事件。值得注意的是,进入昆虫中肠后,内吞作用标志物会迅速下调,并且在随后的发育过程中Rab11和网格蛋白的表达一直很低,这表明重塑寄生虫表面或在昆虫体内存活并不需要高内吞活性。然而,唾液腺中的循环后期锥虫显著增加了网格蛋白和Rab11的表达,这表明哺乳动物感染性锥虫的出现与高活性内吞再循环系统的重新获得有关。这些数据表明,布氏锥虫的高水平内吞作用是其在哺乳动物宿主中生存所必需的一种适应性机制。

相似文献

1
Activation of endocytosis as an adaptation to the mammalian host by trypanosomes.
Eukaryot Cell. 2007 Nov;6(11):2029-37. doi: 10.1128/EC.00213-07. Epub 2007 Sep 28.
3
Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission.
PLoS Pathog. 2014 Oct 30;10(10):e1004493. doi: 10.1371/journal.ppat.1004493. eCollection 2014 Oct.
4
Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei.
Front Cell Infect Microbiol. 2013 Nov 14;3:78. doi: 10.3389/fcimb.2013.00078. eCollection 2013.
6
Regulation of Trypanosoma brucei Total and Polysomal mRNA during Development within Its Mammalian Host.
PLoS One. 2013 Jun 26;8(6):e67069. doi: 10.1371/journal.pone.0067069. Print 2013.
7
An Alba-domain protein required for proteome remodelling during trypanosome differentiation and host transition.
PLoS Pathog. 2021 Jan 25;17(1):e1009239. doi: 10.1371/journal.ppat.1009239. eCollection 2021 Jan.
8
Developmental variation in Rab11-dependent trafficking in Trypanosoma brucei.
Eukaryot Cell. 2005 May;4(5):971-80. doi: 10.1128/EC.4.5.971-980.2005.
10
Trypanosoma brucei brucei: endocytic recycling is important for mouse infectivity.
Exp Parasitol. 2011 Apr;127(4):777-83. doi: 10.1016/j.exppara.2011.01.001. Epub 2011 Jan 20.

引用本文的文献

2
Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48.
Int J Parasitol Drugs Drug Resist. 2018 Aug;8(2):203-212. doi: 10.1016/j.ijpddr.2018.03.002. Epub 2018 Mar 12.
3
TbSmee1 regulates hook complex morphology and the rate of flagellar pocket uptake in Trypanosoma brucei.
Mol Microbiol. 2018 Feb;107(3):344-362. doi: 10.1111/mmi.13885. Epub 2017 Dec 18.
5
Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis.
Front Immunol. 2017 Jun 30;8:724. doi: 10.3389/fimmu.2017.00724. eCollection 2017.
6
Dynamin-like proteins in Trypanosoma brucei: A division of labour between two paralogs?
PLoS One. 2017 May 8;12(5):e0177200. doi: 10.1371/journal.pone.0177200. eCollection 2017.
7
The Hrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions.
J Biol Chem. 2017 Apr 28;292(17):6998-7010. doi: 10.1074/jbc.M116.762997. Epub 2017 Feb 23.
8
Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host.
PLoS Pathog. 2016 Feb 12;12(2):e1005448. doi: 10.1371/journal.ppat.1005448. eCollection 2016 Feb.
9
Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome.
PLoS Biol. 2015 Dec 8;13(12):e1002316. doi: 10.1371/journal.pbio.1002316. eCollection 2015 Dec.
10
Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron.
Biomed Res Int. 2015;2015:819389. doi: 10.1155/2015/819389. Epub 2015 May 18.

本文引用的文献

1
Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes.
Protist. 2008 Jan;159(1):137-51. doi: 10.1016/j.protis.2007.07.004. Epub 2007 Oct 10.
2
A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei.
Mol Microbiol. 2007 Jan;63(1):218-28. doi: 10.1111/j.1365-2958.2006.05492.x.
3
The trypanolytic factor of human serum.
Nat Rev Microbiol. 2006 Jun;4(6):477-86. doi: 10.1038/nrmicro1428.
4
Regulation of surface coat exchange by differentiating African trypanosomes.
Mol Biochem Parasitol. 2006 Jun;147(2):211-23. doi: 10.1016/j.molbiopara.2006.02.013. Epub 2006 Mar 9.
5
Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions.
Parasitology. 2006 May;132(Pt 5):651-8. doi: 10.1017/S0031182005009571. Epub 2006 Jan 5.
6
Trypanosoma brucei: TbRAB4 regulates membrane recycling and expression of surface proteins in procyclic forms.
Exp Parasitol. 2005 Nov;111(3):160-71. doi: 10.1016/j.exppara.2005.07.005. Epub 2005 Sep 13.
7
Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes.
Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8716-21. doi: 10.1073/pnas.0501886102. Epub 2005 Jun 3.
8
Developmental variation in Rab11-dependent trafficking in Trypanosoma brucei.
Eukaryot Cell. 2005 May;4(5):971-80. doi: 10.1128/EC.4.5.971-980.2005.
9
New approaches to the microscopic imaging of Trypanosoma brucei.
Microsc Microanal. 2004 Oct;10(5):621-36. doi: 10.1017/S1431927604040942.
10
Intracellular membrane transport systems in Trypanosoma brucei.
Traffic. 2004 Dec;5(12):905-13. doi: 10.1111/j.1600-0854.2004.00234.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验