Suppr超能文献

单核细胞增生李斯特菌的热休克反应包括参与热休克、细胞分裂、细胞壁合成和SOS反应的基因。

The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response.

作者信息

van der Veen Stijn, Hain Torsten, Wouters Jeroen A, Hossain Hamid, de Vos Willem M, Abee Tjakko, Chakraborty Trinad, Wells-Bennik Marjon H J

机构信息

Laboratory of Food Microbiology, Wageningen University and Research Centre, Bomenweg 2, 6703 HD Wageningen, The Netherlands.

Wageningen Centre for Food Sciences (WCFS), Diedenweg 20, 6703 GW Wageningen, The Netherlands.

出版信息

Microbiology (Reading). 2007 Oct;153(Pt 10):3593-3607. doi: 10.1099/mic.0.2007/006361-0.

Abstract

The food-borne pathogen Listeria monocytogenes has the ability to survive extreme environmental conditions due to an extensive interacting network of stress responses. It is able to grow and survive at relatively high temperatures in comparison with other non-sporulating food-borne pathogens. To investigate the heat-shock response of L. monocytogenes, whole-genome expression profiles of cells that were grown at 37 degrees C and exposed to 48 degrees C were examined using DNA microarrays. Transcription levels were measured over a 40 min period after exposure of the culture to 48 degrees C and compared with those of unexposed cultures at 37 degrees C. After 3 min, 25 % of all genes were differentially expressed, while after 40 min only 2 % of all genes showed differential expression, indicative of the transient nature of the heat-shock response. The global transcriptional response was validated by analysing the expression of a set of 13 genes by quantitative PCR. Genes previously identified as part of the class I and class III heat-shock response and the class II stress response showed induction at one or more of the time points investigated. This is believed to be the first study to report that several heat-shock-induced genes are part of the SOS response in L. monocytogenes. Furthermore, numerous differentially expressed genes that have roles in the cell division machinery or cell wall synthesis were down-regulated. This expression pattern is in line with the observation that heat shock results in cell elongation and prevention of cell division.

摘要

食源性病原体单核细胞增生李斯特菌由于广泛的应激反应相互作用网络,具有在极端环境条件下生存的能力。与其他非芽孢形成的食源性病原体相比,它能够在相对较高的温度下生长和存活。为了研究单核细胞增生李斯特菌的热休克反应,使用DNA微阵列检查了在37℃下生长并暴露于48℃的细胞的全基因组表达谱。在将培养物暴露于48℃后的40分钟内测量转录水平,并与37℃下未暴露的培养物的转录水平进行比较。3分钟后,所有基因的25%差异表达,而40分钟后,所有基因中只有2%显示差异表达,这表明热休克反应具有短暂性。通过定量PCR分析一组13个基因的表达来验证全局转录反应。先前被确定为I类和III类热休克反应以及II类应激反应一部分的基因在一个或多个研究时间点显示出诱导。据信这是第一项报道几种热休克诱导基因是单核细胞增生李斯特菌SOS反应一部分的研究。此外,许多在细胞分裂机制或细胞壁合成中起作用的差异表达基因被下调。这种表达模式与热休克导致细胞伸长和防止细胞分裂的观察结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验