Faxälv Lars, Tengvall Pentti, Lindahl Tomas L
Department of Clinical Chemistry, Laboratory Medicine, University Hospital, SE-581 85 Linköping, Sweden.
J Biomed Mater Res A. 2008 Jun 15;85(4):1129-34. doi: 10.1002/jbm.a.31529.
A new method utilizing image capture and processing was developed for the analysis of blood plasma coagulation at surfaces. The coagulation was detected in a cuvette by time-lapse image capture of light scattering from the developing fibrin network. By image processing and computer analysis of the captured image data, both early detection of coagulation at the surface and the propagation phase of coagulation could be measured in the same experiment. It is possible to use both platelet-rich plasma (PRP) and platelet-free plasma (PFP) with the method, and thereby study the platelet contribution to both surface coagulation and propagation of coagulation. Two well-known model surfaces, hydrophilic and hydrophobic glass, were used in combination with PRP and PFP to illustrate the method. Hydrophilic glass activated coagulation significantly faster (PRP: 7.0 +/- 1.7 min, PFP: 5.9 +/- 1.2 min, n= 16) than hydrophobic glass (PRP: 50 +/- 14 min, PFP: 65 +/- 32 min, n = 16) in both PRP and PFP. Hydrophilic surfaces showed a faster initial propagation of coagulation adjacent to the surface (mean velocity: 0.14 +/- 0.05 mm/ minute) compared with the propagation observed further out from the surface (mean velocity: 0.05 +/- 0.01 mm/min). The method is very flexible and can be suitable for screening hemocompatibility of biomaterials.
开发了一种利用图像捕获和处理的新方法,用于分析表面血浆凝固。通过对正在形成的纤维蛋白网络的光散射进行延时图像捕获,在比色皿中检测凝固情况。通过对捕获的图像数据进行图像处理和计算机分析,在同一实验中既可以测量表面凝固的早期检测,也可以测量凝固的传播阶段。该方法既可以使用富血小板血浆(PRP),也可以使用无血小板血浆(PFP),从而研究血小板对表面凝固和凝固传播的贡献。使用两种著名的模型表面,亲水性玻璃和疏水性玻璃,与PRP和PFP结合来说明该方法。在PRP和PFP中,亲水性玻璃激活凝固的速度明显快于疏水性玻璃(PRP:7.0±1.7分钟,PFP:5.9±1.2分钟,n = 16)(疏水性玻璃:PRP:50±14分钟,PFP:65±32分钟,n = 16)。与从表面更远处观察到的凝固传播(平均速度:0.05±0.01毫米/分钟)相比,亲水性表面在表面附近显示出更快的初始凝固传播(平均速度:0.14±0.05毫米/分钟)。该方法非常灵活,适用于筛选生物材料的血液相容性。