Suppr超能文献

Contact activation of the plasma coagulation cascade. II. Protein adsorption to procoagulant surfaces.

作者信息

Vogler E A, Graper J C, Sugg H W, Lander L M, Brittain W J

机构信息

Becton Dickinson Research Center, Research Triangle Park, North Carolina 27709, USA.

出版信息

J Biomed Mater Res. 1995 Aug;29(8):1017-28. doi: 10.1002/jbm.820290814.

Abstract

A study of blood protein adsorption to procoagulant surfaces utilizing a coagulation time assay, contact angles, Wilhelmy balance tensiometry, and electron spectroscopy (ESCA) is presented. Using a new contact angle method of measuring protein adsorption termed "adsorption mapping" it was demonstrated that protein-adsorbent surfaces were inefficient activators of the intrinsic pathway of the plasma coagulation cascade whereas water-wettable, protein-repellent surfaces were efficient procoagulants. Repeated use of fully water-wettable (spreading) glass procoagulants in the coagulation time assay demonstrated that putative "activating sites" were not consumed in the coagulation of platelet-poor porcine plasma. Furthermore, these procoagulant surfaces retained water-wettable surface properties after incubation with blood proteins and saline rinse. The interpretation of these observations was that plasma and serum proteins were not adsorbed to water-wettable surfaces. However, ESCA of these same surfaces revealed the presence of a thin protein layer. Wilhelmy balance tensiometry resolved these seemingly divergent observations by demonstrating that protein was "associated" with a bound hydration layer, but not formally adsorbed through a surface dehydration or ionic interaction mechanism.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验